pkgs <- c("dplyr", "data.table", "mlr3verse", "mlr3viz")
lapply(pkgs, function(pk) require(pk, character.only = TRUE))
# task -----------------------------------------------------------------------
load("data/task_classif.Rdata")
task$col_roles$feature = setdiff(task$col_roles$feature, c("label", "id", "age_source1", "age_source2", "field_23"))
task$col_roles
# split row_roles
train_idx = 1:30000
test_idx = setdiff(seq_len(task$nrow), train_idx)
task$row_roles$use <- train_idx
task$row_roles$validation <- test_idx
print(task)
# select type ----------------------------------------------------------------
posf = PipeOpSelect$new(id = "select_factor")
posf$param_set$values$selector = selector_type("factor")
posn_0 = PipeOpSelect$new(id = "select_numeric_0")
posn_0$param_set$values$selector = selector_type("numeric")
posn_1 = PipeOpSelect$new(id = "select_numeric_1")
posn_1$param_set$values$selector = selector_type("numeric")
# imputation------------------------------------------------------------------
pof_0 = PipeOpImputeNewlvl$new(id = "imputenewlvl_0")
pof_1 = PipeOpImputeNewlvl$new(id = "imputenewlvl_1")
posample = po("imputesample")
# imbalance-------------------------------------------------------------------
opb = po("classbalancing")
opb$param_set$values = list(ratio = 40, reference = "minor",
adjust = "minor", shuffle = FALSE)
# Learner --------------------------------------------------------------------
lnr_ranger = lrn("classif.ranger", predict_type = "prob", num.trees = 122)
lnr_xgboost = lrn("classif.xgboost", predict_type = "response", scale_pos_weight = 30)
ponop = PipeOpNOP$new()
# Create Learner CV Operators
glnr_ranger_0 = PipeOpLearnerCV$new(lnr_ranger, id = "glnr_ranger_0")
glnr_xgboost_0 = PipeOpLearnerCV$new(lnr_xgboost, id = "glnr_xgboost_0")
glnr_xgboost_1 = PipeOpLearnerCV$new(lnr_xgboost, id = "glnr_xgboost_1")
# main learner
glnr_main = PipeOpLearner$new(lnr_ranger, id = "main_ranger")
# Graph ----------------------------------------------------------------------
level_0 = gunion(list(posn_1 %>>% glnr_xgboost_1,
pof_1 %>>% posample))
level_1 = gunion(list(level_0))
graph = level_1 %>>%
PipeOpFeatureUnion$new(2) %>>%
# PipeOpCopy$new(1) %>>%
opb %>>%
glnr_main
graph$plot(html = TRUE) %>% visNetwork::visInteraction(zoomView = TRUE)
#=============================================================================
glrn = GraphLearner$new(graph)
glrn$param_set %>% as.data.table()
print(glrn)
glrn$predict_type <- "prob"
# Tuning
ps = ParamSet$new(list(
#ParamInt$new("glrn_kknn_0.k", lower = 6, upper = 8),
#ParamDbl$new("glrn_kknn_0.distance", lower = 1, upper = 3),
ParamInt$new("glnr_xgboost_1.scale_pos_weight", lower = 38, upper = 41),
ParamInt$new("glnr_xgboost_1.max_depth", lower = 45, upper = 50),
ParamDbl$new("glnr_xgboost_1.eta", lower = .01, upper = .1),
ParamInt$new("glnr_xgboost_1.gamma", lower = 3, upper = 7),
ParamInt$new("classbalancing.ratio", lower = 20, upper = 29),
ParamInt$new("main_ranger.num.trees", lower = 500, upper = 700)
# ParamInt$new("main_ranger.mtry", lower = 30, upper = 40)
))
resampling_inner = rsmp("cv", folds = 3)
measures = msr("classif.auc")
terminator = term("evals", n_evals = 20)
### 4.3.2 Tuning
instance = TuningInstance$new(
task = task,
learner = glrn,
resampling = resampling_inner,
measures = measures,
param_set = ps,
terminator = terminator
)
tuner = TunerRandomSearch$new()
# tuner = TunerGridSearch$new()
# tuner = TunerGenSA$new()
set.seed(1911)
tuner$tune(instance)
instance$result
instance$archive(unnest = "params")[, c(
# "glnr_xgboost_0.scale_pos_weight",
# "glnr_xgboost_0.max_depth",
# "glnr_xgboost_0.eta",
# "glnr_xgboost_0.gamma",
"glnr_xgboost_1.scale_pos_weight",
"glnr_xgboost_1.max_depth",
"glnr_xgboost_1.eta",
"glnr_xgboost_1.gamma",
"classbalancing.ratio",
"main_ranger.num.trees",
"classif.auc")] %>%
arrange(-classif.auc)
instance$archive(unnest = "params")[, c(
# "glnr_xgboost_0.scale_pos_weight",
# "glnr_xgboost_0.max_depth",
# "glnr_xgboost_0.eta",
# "glnr_xgboost_0.gamma",
"glnr_xgboost_1.scale_pos_weight",
"glnr_xgboost_1.max_depth",
"glnr_xgboost_1.eta",
"glnr_xgboost_1.gamma",
"classbalancing.ratio",
"main_ranger.num.trees",
# "main_ranger.mtry",
"classif.auc")] %>% cor()
glrn$param_set$values = instance$result$params
glrn$train(task)
# check good_bad
glrn$predict(task, row_ids = train_idx)$confusion
glrn$predict(task, row_ids = test_idx) %>% as.data.table() %>% pull(response) %>% table()
# store data
save(glrn, instance, task, test_idx, train_idx, file = "results/folder_ranger/stack_ranger.Rdata")
# Export predict
glrn$predict(task, row_ids = test_idx) %>%
as.data.table() %>%
select(id = row_id, label = prob.bad) %>%
mutate(id = id - 1) %>%
rio::export("results/folder_ranger/stack_ranger.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.