sis_bpf: Bootstrap Particle Filter for SIS model with Population...

Description Usage Arguments Value

View source: R/sis_bpf.R

Description

approximates marginal likelihood of the SIS model using bootstrap particle filter NOTE: this cannot do predictions yet.

Usage

1
sis_bpf(y, model_config, particle_config)

Arguments

y

a vector of length (T+1)

model_config

a list containing:

  • 'N': size of the population

  • 'alpha0' : initial infection probability

  • 'lambda': infection rate

  • 'gamma': recovery rate

  • 'adjacency_matrix_b': network structure

  • 'rho': reporting rate

particle_config

a list containing:

  • 'num_particles' : number of particles for the bootstrap particle filter

  • 'ess_threshold' : if effective sample size drops below the threshold, then perform a resample step. ess_threshold = 1 means resampling at every step.

  • 'save_particles': binary

  • 'clock' : binary, default to FALSE. If clock = TRUE, then we will use a stopwatch to document its Sys.time()

  • 'save_genealogy': binary

  • 'verbose': if TRUE print messages for debug

Value

A list containing


nianqiaoju/agents documentation built on Feb. 19, 2021, 12:18 a.m.