#'Estimate allelic richness for STRUCTURE clusters
#'
#'This function randomly assigns individuals to clusters using STRUCTURE
#'assignment probabilities provided in the qmatrix. It then uses resampling
#'to generate distributions of rarefied allelic richness for each locus in each cluster.
#'
#'@importFrom magrittr %>%
#'
#'@param qmatrix Dataframe. The STRUCTURE qmatrix, with individuals in column 'ind'
#'@param allele.dat Dataframe. Raw allele data (sep = '/')
#'@param nclusters Integer. The number of clusters identified by STRUCTURE
#'@param nreps Integer. The number of times to repeat estimations. Default is 100
#'@param samp.snps Logical. If TRUE, a specified number of SNPs will be randomly sampled
#'in each iteration to account for uncertainty and speed computations. Default is FALSE
#'@param ncores (optional) Integer. Number of cores to split job across for parallel
#'computing. Default is 1 (no parallelisation)
#'@param nsamp (optional) Integer. Number of SNPs to sample during each iteration. If
#'samp.snps = TRUE and nsamp is not provided, default is to sample 50% of the loci
#'(i.e. ncol(allele.dat)/2) in each iteration
#'@param NA.symbol The code used to represent missing allele data
#'@return Matrix of repeated estimates of allelic richness for each locus in each cluster
#'@export
richness.STRUCTURE.popgen = function(qmatrix,allele.dat,nclusters,nreps,
NA.symbol,samp.snps,nsamp,ncores){
#Specify default values for optional arguments
if(missing(nreps)) {
nreps = 100
}
if(missing(nsamp)){
nsamp = ncol(allele.dat)/2
}
if(missing(ncores)){
ncores = 1
}
if(missing(samp.snps)){
samp.snps = FALSE
}
if(samp.snps==TRUE){
#Initiate the parallel clusters
cl <- makePSOCKcluster(ncores)
setDefaultCluster(cl)
#Export necessary data and variables to each cluster
clusterExport(NULL, c('nreps','allele.dat','qmatrix','nclusters',
'NA.symbol','nsamp'),envir=environment())
#Export necessary functions to each cluster
clusterExport(NULL, c('STRUCTURE.popgen'))
#Export necessary libraries
clusterEvalQ(cl, library(adegenet))
clusterEvalQ(cl, library(PopGenReport))
clusterEvalQ(cl, library(hierfstat))
test <- parLapply(NULL, seq(1:nreps), function(x) {
STRUCTURE.popgen(qmatrix,allele.dat,nclusters,stat="richness",NA.symbol,
samp.snps=T,nsamp=nsamp)
})
raw.richness = plyr::rbind.fill(test)
stopCluster(cl)
}
if(samp.snps==FALSE){
cl <- makePSOCKcluster(ncores)
setDefaultCluster(cl)
clusterExport(NULL, c('nreps','allele.dat','qmatrix','nclusters',
'NA.symbol'),envir=environment())
clusterExport(NULL, c('STRUCTURE.popgen'))
clusterEvalQ(cl, library(adegenet))
clusterEvalQ(cl, library(PopGenReport))
clusterEvalQ(cl, library(hierfstat))
test <- parLapply(NULL, seq(1:nreps), function(x) {
STRUCTURE.popgen(qmatrix,allele.dat,nclusters,stat="richness",NA.symbol,
samp.snps=F)
})
raw.richness = plyr::rbind.fill(test)
stopCluster(cl)
}
summed.richness = raw.richness %>%
dplyr::mutate_all(dplyr::funs(replace(., which(.==0), NA))) %>%
dplyr::group_by(locus) %>%
tidyr::gather(key=cluster,value=richness,-locus)
return(summed.richness)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.