#' Extract diagnostic quantities of \pkg{mvgam} models
#'
#' Extract quantities that can be used to diagnose sampling behavior
#' of the algorithms applied by \pkg{Stan} at the back-end of \pkg{mvgam}.
#'
#' @name mvgam_diagnostics
#' @aliases nuts_params rhat neff_ratio
#'
#' @param object,x A \code{mvgam} or \code{jsdgam} object.
#' @param pars An optional character vector of parameter names.
#' For \code{nuts_params} these will be NUTS sampler parameter
#' names rather than model parameters. If pars is omitted
#' all parameters are included.
#' @param ... Arguments passed to individual methods.
#'
#' @return The exact form of the output depends on the method.
#' @examples
#' \donttest{
#' simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
#' mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),
#' trend_model = AR(),
#' noncentred = TRUE,
#' data = simdat$data_train,
#' chains = 2)
#' np <- nuts_params(mod)
#' head(np)
#'
#' # extract the number of divergence transitions
#' sum(subset(np, Parameter == "divergent__")$Value)
#'
#' head(neff_ratio(mod))
#' }
#' @details For more details see
#' \code{\link[bayesplot:bayesplot-extractors]{bayesplot-extractors}}.
#'
NULL
#' @rdname mvgam_diagnostics
#' @importFrom bayesplot nuts_params
#' @export nuts_params
#' @export
nuts_params.mvgam <- function(object, pars = NULL, ...) {
bayesplot::nuts_params(object$model_output, pars = pars, ...)
}
#' @rdname mvgam_diagnostics
#' @importFrom bayesplot log_posterior
#' @export
log_posterior.mvgam <- function(object, ...) {
bayesplot::log_posterior(object$model_output, ...)
}
#' @rdname mvgam_diagnostics
#' @importFrom posterior rhat
#' @export rhat
#' @export
rhat.mvgam <- function(x, pars = NULL, ...) {
# bayesplot uses outdated rhat code from rstan
# bayesplot::rhat(object$fit, pars = pars, ...)
if (is.null(pars)) {
vars_extract <- variables(x)
draws <- as_draws_array(
x,
variable = unlist(purrr::map(vars_extract, 'orig_name')),
use_alias = FALSE
)
} else {
draws <- as_draws_array(x, variable = pars)
}
tmp <- posterior::summarise_draws(draws, rhat = posterior::rhat)
rhat <- tmp$rhat
names(rhat) <- tmp$variable
rhat
}
#' @rdname mvgam_diagnostics
#' @importFrom bayesplot neff_ratio
#' @importFrom brms ndraws
#' @export neff_ratio
#' @export
neff_ratio.mvgam <- function(object, pars = NULL, ...) {
insight::check_if_installed(
"matrixStats",
reason = 'to calculate effective sample sizes'
)
if (is.null(pars)) {
vars_extract <- unlist(purrr::map(variables(object), 'orig_name'))
vars_extract <- vars_extract[-grep('ypred', vars_extract)]
draws <- as_draws_array(object, variable = vars_extract, use_alias = FALSE)
} else {
draws <- as_draws_array(object, variable = pars)
}
tmp <- posterior::summarise_draws(
draws,
ess_bulk = posterior::ess_bulk,
ess_tail = posterior::ess_tail
)
# min of ess_bulk and ess_tail mimics definition of posterior::rhat.default
ess <- matrixStats::rowMins(cbind(tmp$ess_bulk, tmp$ess_tail))
names(ess) <- tmp$variable
ess / brms::ndraws(draws)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.