ARCH | Create an autoregressivemodel with ARCH(1) error |
ARCH.optimal.logpdf | Log-likelihood of ARCH optimal kernel |
ARCH.optimal.params | Parameters for ARCH optimal kernel |
ARCH.optimal.rnd | Sample from ARCH optimal kernel |
arp.mcmc | Normal AR(p) MCMC |
bi.coh | Normalized Bispectrum |
CPFSAEM | Run a Conditional Particle Stochastic Approximation EM chain |
CPFSGgrowth | Run a Conditional Particle Stochastic Approximation SG chain |
cpf.sisr | Conditional Particle filter via Sequential Importance... |
CV | Coefficient of Variation of importance weights |
EEG | EEG trace. |
ESS | Effective Sample Size of importance weights |
in.support.NoisyAR | Checks if parameters are valid for a Noisy AR model |
loclike.logpdf | Log-pdf of the local likelihood of a Non linear state space... |
loclike.logpdf.NoisyAR | Compute the local likelihood of a NoisyAR model |
metronorm | Metropolis Normal |
MH | Run a Metropolis-Hastings chain |
MultinomialR | Multinomial resampling |
nltsa-package | Nonlinear Time Series Analysis |
NoisyAR | Create a Noisy Auto-Regressive(1) NLSS model |
normalized.exponential | Normalized exponential of a vector |
ParticleEM | Run a Particle EM chain |
ParticleMarginalMH | Run a Particle Marginal Metropolis-Hastings chain |
ParticleSAEM | Run a Particle Stochastic Approximation EM chain |
ParticleSGGrowth | Run a Particle Stochastic Gradient for the Growth model |
random.walk | Gaussian Random-walk proposal kernel |
simulate.data | Simulation of a dataset for a NLSS |
sis | Sequential Importance Sampling with Prior kernel for 1-D NLSS |
siskernel | Sequential Importance Sampling with arbitrary kernel for 1-D... |
sisr | Particle filter via Sequential Importance Sampling with... |
sp500.gr | Growth Rate of the S&P 500 |
Stovol | Create a Stochastic Volatility model |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.