ParticleSAEM: Run a Particle Stochastic Approximation EM chain

Description Usage Arguments Value See Also

Description

This function implements Particle Stochastic Approximation EM

Usage

1
2
3
  ParticleSAEM(initial.nlss, y, n.particles = function(i) {
        30 }, sa.rate = function(i) {     1/(i + 1)^(2/3)
    }, n.em, .progress = progress_text, ...)

Arguments

initial.nlss

NLSS whose parameters value will serve as starting point

y

Observations

n.particles

Number of particles

n.em

Number of SAEM iterations

sa.rate

Learning rate as a function of the iteration

.progress

Progress bar to use, from plyr package, default to progress_text

...

Extra parameters to pass to the SISR filter, see function sisr

Value

A list with the same components as MH

See Also

MH, sisr, random.walk


nickpoison/nltsa documentation built on May 23, 2019, 4:48 p.m.