#' Performs gene set enrichment on numeric protein vector with specified Ontology
#'
#' @param proteins numeric score vector
#' @param database database to use
#' @param inverse enrich for terms in higher values/scores
#' @param pvalueCutoff p-value cutoff for annotations
#' @param pAdjustMethod one of "none", "BH" (Benjamini-Hochberg correction), "hochberg", "bonferroni", "holm", "hommel", "BY", "fdr"
#' @param qvalueCutoff q-value cutoff for annotations
#' @param minGSSize minimum number of annotated proteins to be included
#' @param maxGSSize maximum number of annotated proteins to be included
#' @param dataset dataset
#' @param return.all Should the enrichrObject be returned
#' @param add.info Add additional information (takes longer)
#'
#' @return
#' @export
#'
#'
do_GSEA <- function(proteins,
database,
inverse = F,
pvalueCutoff = 0.05,
pAdjustMethod = "none",
qvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 120,
dataset,
return.all = F,
add.info = F) {
# inverse enrichment
if(inverse) proteins <- -proteins
# GO enrichment
# if (database %in% c("topCC", "topBP", "topMF"))
# results <- do_GSEA_topGO(proteins = proteins,
# ontology = database,
# pvalueCutoff = pvalueCutoff,
# pAdjustMethod = pAdjustMethod,
# minGSSize = minGSSize,
# maxGSSize = maxGSSize,
# algorithm = algorithm,
# dataset = dataset,
# add.info = add.info)
# KEGG
else if (database %in% c("Kegg", "KEGG", "kegg"))
results <- do_GSEA_KEGG(proteins = proteins,
pvalueCutoff = pvalueCutoff,
pAdjustMethod = pAdjustMethod,
minGSSize = minGSSize,
maxGSSize = maxGSSize,
dataset = dataset,
view = T,
return.all = return.all,
add.info = add.info)
#
# Return results
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.