Below we just generate the necessary plot to explain how BH works.
library("ggplot2") library("dplyr") library("wesanderson") library("grid") library("gridExtra") library("IHW")
Plot as in B.Sc. thesis with very low $\pi_0$. (Using this so it can be clearly demonstrated that the BH threshold is an intermediate threshold between the Bonferroni threshold and the uncorrected one, also such $\pi_0$ allows to show all p-values in the second plot and still observe the interesting behaviour.)
simpleSimulation <- function(m,m1,betaA,betaB){ pvalue <- runif(m) H <- rep(0,m) alternatives <- sample(1:m,m1) pvalue[alternatives] <- rbeta(m1,betaA,betaB) H[alternatives] <-1 simDf <- data.frame(pvalue = pvalue, group=runif(m), filterstat = runif(m), H=H) return(simDf) } set.seed(1) sim <- simpleSimulation(1000, 700, 0.3, 8) sim$rank <- rank(sim$pvalue) histogram_plot <- ggplot(sim, aes(x=pvalue)) + geom_histogram(binwidth=0.1, fill = wes_palette("Chevalier1")[4]) + xlab("p-value") + theme_bw() bh_threshold <- get_bh_threshold(sim$pvalue, .1) bh_plot <- ggplot(sim, aes(x=rank, y=pvalue)) + geom_step(col=wes_palette("Chevalier1")[4]) + ylim(c(0,0.2)) + geom_abline(intercept=0, slope= 0.1/1000, col = wes_palette("Chevalier1")[2]) + geom_hline(yintercept=bh_threshold, linetype=2) + annotate("text",x=250, y=0.065, label="BH testing") + geom_hline(yintercept = 0.1, linetype=2) + annotate("text",x=250, y=0.11, label="uncorrected testing") + geom_hline(yintercept = 0.1/1000, linetype=2) + annotate("text",x=850, y=0.1/1000+0.01, label="Bonferroni testing") + ylab("p-value") + xlab("rank of p-value") + theme_bw() + scale_colour_manual(values=wes_palette("Chevalier1")[c(3,4)])
grid.arrange(histogram_plot, bh_plot, nrow=1)
pdf(file="bh_explanation.pdf", width=11, height=5) grid.arrange(histogram_plot, bh_plot, nrow=1) dev.off()
For ddhw presentation, remake above plot with higher $\pi_0$.
set.seed(1) sim <- simpleSimulation(10000, 2000, 0.3, 8) sim$rank <- rank(sim$pvalue) histogram_plot <- ggplot(sim, aes(x=pvalue)) + geom_histogram(binwidth=0.1, fill = wes_palette("Chevalier1")[4]) + xlab("p-value") + theme_bw(14) bh_threshold <- get_bh_threshold(sim$pvalue, .1) bh_plot <- ggplot(sim, aes(x=rank, y=pvalue)) + geom_step(col=wes_palette("Chevalier1")[4], size=1.2) + scale_x_continuous(limits=c(0,2000),expand = c(0, 0))+ scale_y_continuous(limit=c(0,0.06), expand=c(0,0)) + geom_abline(intercept=0, slope= 0.1/10000, col = wes_palette("Chevalier1")[2], size=1.2) + annotate("text",x=500, y=1.3*bh_threshold, label="BH rejection threshold") + geom_hline(yintercept=bh_threshold, linetype=2, size=1.2) + ylab("p-value") + xlab("rank of p-value") + theme_bw() + scale_colour_manual(values=wes_palette("Chevalier1")[c(3,4)])
grid.arrange(histogram_plot, bh_plot, nrow=1)
pdf(file="bh_explanation_high_pi0.pdf", width=11, height=5) grid.arrange(histogram_plot, bh_plot, nrow=1) dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.