library(ggbio) library(dplyr) library(IHW) library(fdrtool) library(cowplot) theme_set(theme_cowplot()) library(tidyr) library(scales) library(latex2exp)
Let us start by loading in the data:
file_loc <- system.file("extdata","real_data", "hqtl_chrom1_chrom2", package = "IHWpaper")
First the two tables with the p-values corresponding to the two chromosomes. Note that only p-values <= 1e-4 are stored in these.
chr1_df <- readRDS(file.path(file_loc, "chr1_subset.Rds")) chr2_df <- readRDS(file.path(file_loc, "chr2_subset.Rds"))
pval_threshold <- 10^(-4)
Also recall each hypothesis corresponds to a peak (which we call gene below) and a SNP. Hence let us load files about each of the SNPs and peaks:
snp_chr1 <- readRDS(file.path(file_loc, "snppos_chr1.Rds")) snp_chr2 <- readRDS(file.path(file_loc, "snppos_chr2.Rds")) all_peaks <- readRDS(file.path(file_loc, "peak_locations.Rds")) peaks_chr1 <- dplyr::filter(all_peaks, chr=="chr1") peaks_chr2 <- dplyr::filter(all_peaks, chr=="chr2")
We can use these both to infer how many hypotheses were conducted in total (or at a given distance), but also to calculate our covariates which are a function of SNP and peak (their distance).
Now let us attach the new column with the covariate (distance) to the data frames.
chr1_df <- left_join(chr1_df, select(snp_chr1, snp, pos), by=(c("SNP"="snp"))) %>% left_join(peaks_chr1, by=(c("gene"="id"))) %>% mutate( dist = pmin( abs(pos-start), abs(pos-end))) chr2_df <- left_join(chr2_df, select(snp_chr2, snp, pos), by=(c("SNP"="snp"))) %>% left_join(peaks_chr2, by=(c("gene"="id"))) %>% mutate( dist = pmin( abs(pos-start), abs(pos-end)))
Now let us convert the distance to a categorical covariate by binning:
my_breaks <- c(-1, seq(from=10000,to=290000, by=10000) , seq(from=300000, to=0.9*10^6, by=100000), seq(from=10^6, to=25.1*10^7, by=10^7)) myf1 <- cut(chr1_df$dist, my_breaks) myf2 <- cut(chr2_df$dist, my_breaks)
To apply our method despite the fact that only small p-values are available, we will count how many hypotheses there are in each of the bins. The above code is not very efficient, so we have precomputed the results and do not run the below chunk.
cnt = 0 ms <- rep(0, length(levels(myf1))) pb = txtProgressBar(min = 0, max = nrow(peaks_chr1), initial = 0) for (i in 1:nrow(peaks_chr1)){ setTxtProgressBar(pb,i) start_pos <- peaks_chr1$start[i] end_pos <- peaks_chr1$end[i] dist_vec <- pmin( abs(snp_chr1$pos - start_pos), abs(snp_chr1$pos - end_pos) ) ms <- ms + table(cut(dist_vec, my_breaks)) } saveRDS( ms, file = "m_groups_chr1.Rds" ) cnt = 0 ms_chr2 <- table(myf2)*0 pb = txtProgressBar(min = 0, max = nrow(peaks_chr2), initial = 0) for (i in 1:nrow(peaks_chr2)){ setTxtProgressBar(pb,i) start_pos <- peaks_chr1$start[i] end_pos <- peaks_chr1$end[i] dist_vec <- pmin( abs(snp_chr2$pos - start_pos), abs(snp_chr2$pos - end_pos) ) ms_chr2 <- ms_chr2 + table(cut(dist_vec, my_breaks)) } saveRDS( ms_chr2, file = "m_groups_chr2.Rds" )
Let us load the result from the above execution:
ms_chr1 <- readRDS(file.path(file_loc, "m_groups_chr1.Rds")) ms_chr2 <- readRDS(file.path(file_loc, "m_groups_chr2.Rds"))
Let us put the data for the two chromosomes together:
chr1_chr2_df <- rbind(chr1_df, chr2_df) chr1_chr2_groups <- as.factor(c(myf1,myf2)) folds_vec <- as.factor(c(rep(1, nrow(chr1_df)), rep(2, nrow(chr2_df)))) m_groups <- cbind(ms_chr1, ms_chr2)
m <- sum(m_groups) #total number of hypotheses m
Get our colors:
beyonce_colors <- c("#b72da0", "#7c5bd2", "#0097ed","#00c6c3", "#9cd78a", "#f7f7a7", "#ebab5f", "#e24344", "#04738d")#,"#d8cdc9") beyonce_colors[6] <- c("#dbcb09") # thicker yellow pretty_colors <- beyonce_colors[c(2,1,3:5)]
qs <- c(0.025, 0.05) cutoffs <- c(0, quantile(chr1_chr2_df$dist,qs), Inf) cov_scatter_gg <- ggplot(chr1_chr2_df, aes(x=rank(dist)/nrow(chr1_chr2_df), y=-log10(pvalue))) + geom_bin2d(bins=150, drop=TRUE) + # geom_point(alpha=0.2, col=pretty_colors[1]) + geom_vline(xintercept=qs, linetype="dashed") + ylab(expression(paste(-log[10],"(p-value)"))) + xlab(expression(paste("Quantile of distance"))) + scale_fill_gradientn(trans="log10", colors=alpha(pretty_colors[1], c(0.2,1))) cov_scatter_gg
ggsave(cov_scatter_gg, filename="cov_scatter_gg.pdf", width=4,height=3)
chr1_chr2_df$cutoff_groups <- cut(chr1_chr2_df$dist, cutoffs) table(chr1_chr2_df$cutoff_groups)
First let us plot the marginal histogram:
gg_marginal_hist <- ggplot(chr1_chr2_df, aes(x=pvalue*10^4)) + geom_histogram(aes(y=..density..), alpha=0.5, binwidth=0.05, boundary = 0, colour="black",fill=pretty_colors[1]) + scale_x_continuous(expand = c(0.02, 0), breaks=c(0,0.5,1)) + scale_y_continuous(expand = c(0.02, 0), limits=c(0,2.5)) + ylab(expression(paste("Density")))+ xlab(TeX("p-value ($\\times 10^{-4}$)")) gg_marginal_hist
ggsave(gg_marginal_hist, filename="gg_marginal_hist.pdf", width=4,height=3)
gg_stratified_hist <- ggplot(chr1_chr2_df, aes(x=pvalue*10^4)) + geom_histogram(aes(y=..density..), alpha=0.5, binwidth=0.05, boundary = 0, colour="black",fill=pretty_colors[1]) + scale_x_continuous(expand = c(0.02, 0), breaks=c(0,0.5,1)) + scale_y_continuous(expand = c(0.02, 0), limits=c(0,11)) + ylab("Density")+ xlab(TeX("p-value ($\\times 10^{-4}$)")) + facet_grid(~cutoff_groups) + theme(strip.background = element_blank(), strip.text.y = element_blank()) + theme(panel.spacing = unit(2, "lines")) gg_stratified_hist
ggsave(gg_stratified_hist, filename="gg_stratified_hist.pdf", width=7,height=3)
We want to apply the Benjamini-Yekutieli at alpha=0.1, thus we will apply Benjamini-Hochberg at the corrected level:
alpha <- .01/(log(m)+1)
Now let us run the IHW procedure:
ihw_chr1_chr2 <- ihw(chr1_chr2_df$pvalue, chr1_chr2_groups, alpha, folds=folds_vec, m_groups=m_groups, lambdas=2000)
Rejections of BY:
sum(p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") <= alpha)
Rejections of IHW-BY:
rejections(ihw_chr1_chr2)
So we see that discoveries have more than doubled.
What if we had applied BH and IHW-BH instead of BY and IHW-BY?
alpha_bh <- 0.01 ihw_chr1_chr2_bh <- ihw(chr1_chr2_df$pvalue, chr1_chr2_groups, alpha_bh, folds=folds_vec, m_groups=m_groups, lambdas=2000)
sum(p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") <= alpha_bh)
rejections(ihw_chr1_chr2_bh)
For our table we show one hypothesis on Chromosome 1 that gets rejected both times (by BH and IHW):
idx <- which(rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==3) & (ihw_chr1_chr2@df$fold == 1)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],]
chr1_df[idx[idx_max],]
We show one hypothesis on Chromosome 1 that gets weight 0:
idx <- which( !rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==15) & (ihw_chr1_chr2@df$fold == 1)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],]
chr1_df[idx[idx_max],]
Next we find a hypothesis which gets rejected in both cases from Chr2 :
idx <- which( rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") <= alpha) & (covariates(ihw_chr1_chr2)==3) & (ihw_chr1_chr2@df$fold == 2))
ihw_chr1_chr2@df[idx[9],]
chr2_df[idx[9]-nrow(chr1_df),]
And another one that only gets rejected in one case
idx <- which( rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==1) & (ihw_chr1_chr2@df$fold == 2)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],]
chr2_df[idx[idx_max]-nrow(chr1_df),]
First get the threshold below which BY rejects:
t_bh <- get_bh_threshold(chr1_chr2_df$pvalue, alpha, mtests = m) t_bh
Next write a function to estimate the local fdr at a given threshold:
get_local_fdr <- function(fold, group){ idx <- (chr1_chr2_groups == group) & (folds_vec == fold) pvals <- sort(chr1_chr2_df$pvalue[idx]) m_true <- m_groups[group,fold] gren <- IHW:::presorted_grenander(pvals, m_true) myt <- thresholds(ihw_chr1_chr2, levels_only=TRUE)[group,fold] id_ihw_myt <- which(myt < gren$x.knots)[1] local_fdr_ihw <- ifelse(myt == 0, 0, 1/gren$slope.knots[id_ihw_myt-1]) id_bh_thresh <- which(t_bh < gren$x.knots)[1] local_fdr_bh <- 1/gren$slope.knots[id_bh_thresh-1] pi0 <- (m_true - length(pvals))/(1-10^(-4))/m_true data.frame(fold=fold, group=group, pi0=pi0, t_ihw=myt, local_fdr_ihw = local_fdr_ihw, local_fdr_bh = local_fdr_bh) }
fold_groups <- expand.grid(1:62, 1:2)
Precompute the below too because it takes a while:
lfdrs <- bind_rows(mapply(get_local_fdr, fold_groups[[2]], fold_groups[[1]], SIMPLIFY = FALSE)) saveRDS(lfdrs,file="hqtl_estimated_lfdrs.Rds")
lfdrs <- readRDS(file.path(file_loc, "hqtl_estimated_lfdrs.Rds"))
lfdrs <- mutate(lfdrs, Chromosome=paste0("chr", fold), stratum=group, t_bh=t_bh)
breaks <- my_breaks/10^3 breaks <- breaks[-1] break_min <- 3000/10^3 breaks_left <- c(break_min,breaks[-length(breaks)]) stratum <- 1:62 step_df_weight <- data.frame(stratum=stratum, chr2=weights(ihw_chr1_chr2,levels_only=TRUE)[,1], chr1=weights(ihw_chr1_chr2, levels_only=TRUE)[,2] ) %>% gather(Chromosome, weight , -stratum) step_df_threshold <- data.frame(stratum=stratum, chr2=thresholds(ihw_chr1_chr2,levels_only=TRUE)[,2], chr1=thresholds(ihw_chr1_chr2, levels_only=TRUE)[,1] ) %>% gather(Chromosome, threshold , -stratum) step_df <- left_join(step_df_weight, step_df_threshold) %>% left_join(lfdrs) step_df <- step_df %>% mutate(break_left = breaks_left[stratum], break_right = breaks[stratum], break_ratio = break_right/break_left, break_left_init = break_left, break_right_init = break_right, break_left =break_left * break_ratio^.2, break_right = break_right *break_ratio^(-.2)) stratum_fun <- function(df, colname="weight"){ stratum <- df$stratum weight <- df[[colname]] stratum_left <- stratum[stratum != length(stratum)] weight_left <- weight[stratum_left] break_left <- df$break_right[stratum_left] stratum_right <- stratum[stratum != 1] weight_right <- weight[stratum_right] break_right <- df$break_left[stratum_right] data.frame(stratum_left= stratum_left, weight_left= weight_left, stratum_right = stratum_right, weight_right = weight_right, break_left = break_left, break_right = break_right) } connecting_df_weights <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(.)) %>% mutate(dashed = factor(ifelse(abs(weight_left - weight_right) > 0.5 , TRUE, FALSE), levels=c(FALSE,TRUE))) weights_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8)+ geom_segment(data= connecting_df_weights, aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8)+ scale_x_log10(breaks=c(10^4, 10^5,10^6,10^7,10^8), labels = trans_format("log10", math_format(10^.x))) + xlab("Genomic distance (bp)")+ ylab("Weight")+ theme(legend.position=c(0.8,0.6)) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel
weights_panel_1 <- ggplot(filter(step_df, Chromosome == "chr1"), aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8,lineend="round")+ geom_segment(data= filter(connecting_df_weights, Chromosome=="chr1"), aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8,lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(breaks=c(0,1000,2000))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("Weight")))+ theme(legend.position="none") + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel_1
ggsave(weights_panel_1, filename="chr1_weights.pdf", width=3.5,height=2.5)
weights_panel_2 <- ggplot(filter(step_df, Chromosome == "chr2"), aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= filter(connecting_df_weights, Chromosome=="chr2"), aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(breaks=c(0,1000,2000))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("Weight")))+ theme(legend.position="none") + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel_2
ggsave(weights_panel_2, filename="chr2_weights.pdf", width=3.5,height=2.5)
connecting_df_thresholds_ihw <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="t_ihw")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 10^{-7} , TRUE, FALSE), # levels=c(FALSE,TRUE))) thresholds_ihw_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=t_ihw*10^6, yend=t_ihw*10^6, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_thresholds_ihw, aes(x=break_left, xend=break_right, y=weight_left*10^6, yend=weight_right*10^6, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(limits=c(0,1.8), breaks=c(0,1))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("IHW s(x) (",10^-6,")")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) thresholds_ihw_panel
ggsave(thresholds_ihw_panel, filename="ihw_by_threshold.pdf", width=3.5,height=2.5)
connecting_df_thresholds_bh <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="t_bh")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 10^{-11} , TRUE, TRUE), #levels=c(FALSE,TRUE))) scientific_10 = function(x) {ifelse(x==0, "0", parse(text=gsub("[+]", "", gsub("e", " %*% 10^", scientific_format()(x)))))} thresholds_bh_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=10^10*t_bh, yend=10^10*t_bh, col=Chromosome)) + geom_segment(size=0.8)+ geom_segment(data= connecting_df_thresholds_bh, aes(x=break_left, xend=break_right, y=weight_left*10^10, yend=weight_right*10^10, linetype=dashed), size=0.8)+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(limits=c(0,5), breaks=c(0,2,4))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("BY s(x) (",10^-10,")")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) thresholds_bh_panel
ggsave(thresholds_bh_panel, filename="by_threshold.pdf", width=3.5,height=2.5)
connecting_df_lfdr_ihw <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="local_fdr_ihw")) %>% mutate(dashed = FALSE) lfdr_ihw_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=10^1*local_fdr_ihw, yend=10^1*local_fdr_ihw, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_lfdr_ihw, aes(x=break_left, xend=break_right, y=10^1*weight_left, yend=10^1*weight_right, linetype=dashed), size=0.8,lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("IHW fdr(s(x) | x)")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) lfdr_ihw_panel
ggsave(lfdr_ihw_panel, filename="ihw_by_fdr.pdf", width=3.5,height=2.5)
connecting_df_lfdr_bh <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="local_fdr_bh")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 0.5*10^(-6) , TRUE, FALSE), # levels=c(FALSE,TRUE))) lfdr_bh_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=local_fdr_bh, yend=local_fdr_bh, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_lfdr_bh, aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_log10( labels = trans_format("log10", math_format(10^.x)))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("BY fdr(s(x) | x)")))+ theme(legend.position=c(0.6,0.4), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) lfdr_bh_panel
ggsave(lfdr_bh_panel, filename="by_fdr.pdf", width=3.5,height=2.5)
Below we use ggbio to create the ideograms of Human chromosomes 1 and 2.
Ideogram(genome = "hg19", subchr="chr1")
Ideogram(genome = "hg19", subchr="chr2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.