## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
library(babelmixr2)
library(PopED)
##-- Model: One comp first order absorption
f <- function() {
ini({
tCl <- 0.15
tV <- 8
tKA <- 1.0
tFavail <- fix(1)
eta.cl ~ 0.07
eta.v ~ 0.02
eta.ka ~ 0.6
prop.sd <- sqrt(0.01)
})
model({
CL <- tCl*exp(eta.cl)
V <- tV*exp(eta.v)
KA <- tKA*exp(eta.ka)
Favail <- tFavail
y <- (DOSE*Favail*KA/(V*(KA-CL/V)))*(exp(-CL/V*time)-exp(-KA*time))
y ~ prop(prop.sd)
})
}
e <- et(c(0.5, 1,2,6,24,36,72,120)) %>%
as.data.frame()
## -- Define initial design and design space
babel.db <- nlmixr2(f, e, "poped",
control=popedControl(
groupsize=32,
minxt=0,
maxxt=120,
a=70))
## create plot of model without variability
plot_model_prediction(babel.db)
## create plot of model with variability
plot_model_prediction(babel.db,IPRED=T,DV=T)
#########################################
## NOTE All PopED output for residuals
## (add or prop) are VARIANCES instead of
## standard deviations!
#########################################
## get predictions from model
## Original:
## > model_prediction(poped.db)
## > Time PRED Group Model a_i
## 1 0.5 3.4254357 1 1 70
## 2 1.0 5.4711041 1 1 70
## 3 2.0 7.3821834 1 1 70
## 4 6.0 7.9462805 1 1 70
## 5 24.0 5.6858561 1 1 70
## 6 36.0 4.5402483 1 1 70
## 7 72.0 2.3116966 1 1 70
## 8 120.0 0.9398657 1 1 70
model_prediction(babel.db)
## evaluate initial design
# Original:
## $rse
## CL V KA d_CL d_V d_KA SIGMA[1,1]
## 4.738266 2.756206 13.925829 25.627205 30.344316 25.777327 11.170784
evaluate_design(babel.db)
shrinkage(babel.db)
## Evaluate with full FIM
evaluate_design(babel.db, fim.calc.type=0)
# Examine efficiency of sampling windows
plot_efficiency_of_windows(babel.db,xt_windows=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.