## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error to
## avoid sample times at very low concentrations (time 0 or very late samoples).
## Model described with an ODE
library(PopED)
library(babelmixr2)
f <- function() {
ini({
tCl <- 0.15
tV <- 8
tKA <- 1.0
tFavail <- fix(1)
eta.cl ~ 0.07
eta.v ~ 0.02
eta.ka ~ 0.6
prop.sd <- sqrt(0.01) # nlmixr2 uses sd
add.sd <- sqrt(0.25)
})
model({
CL <- tCl*exp(eta.cl)
V <- tV*exp(eta.v)
KA <- tKA*exp(eta.ka)
Favail <- tFavail
d/dt(depot) <- -KA*depot
d/dt(central) <- KA*depot - (CL/V)*central
depot(0) <- Favail*DOSE
y <- central/V
y ~ prop(prop.sd) + add(add.sd)
})
}
## -- Define initial design and design space
e <- et(c(0.5, 1,2,6,24,36,72,120)) %>%
as.data.frame()
babel.db <- nlmixr2(f, e, "poped",
popedControl(groupsize=32,
minxt=0,
maxxt=120,
a=70,
mina=0,
maxa=100))
## create plot of model without variability
plot_model_prediction(babel.db)
## create plot of model with variability
plot_model_prediction(babel.db,IPRED=T,DV=T)
## evaluate initial design (much faster than pure R solution)
tic(); design_ode_compiled <- evaluate_design(babel.db); toc()
## making optimization times more reasonable
# Note: The parallel option does not work well with Windows machines at this moment.
# Please set parallel = FALSE if you are working on a Windows machine
output <- poped_optim(babel.db, opt_xt =TRUE, parallel=TRUE, method = "LS")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.