inst/models/values-1.1.1.3-U001_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-12123.21, 24256.41, 24285.06), param = c(1.3612, 
4.2046, 0.19785), stdev_param = c(0.30235, 0.27063, NA), sigma = c(prop.err = 0.19785), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.36117441998305, 
    lVc = 4.20456868319459, prop.err = 0.197852211156312), SE = c(lCl = 0.0250942447870577, 
    lVc = 0.0280994204089235, prop.err = NA), "%RSE" = c(1.84357305123103, 
    0.668306847292928, NA), "Back-transformed" = c(3.90077175705509, 
    66.9916967893874, 0.197852211156312), "CI Lower" = c(3.71355858409581, 
    63.4019635134084, NA), "CI Upper" = c(4.09742298554406, 70.7846759000154, 
    NA), "BSV(CV%)" = c(27.5657712346864, 30.9393460712591, NA
    ), "Shrink(SD)%" = c(1.00720633282289, 1.30831557728288, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0914156181362102, 0, 0, 0.0732385419439301
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 19.095, 
        setup = 9.58665900000001, table = 0.0520000000000067, 
        cwres = 9.65000000000001, covariance = 0.0539999999999878, 
        other = 0.405340999999993), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 20063.4040052678, AIC = 24256.4122084155, 
        BIC = 24285.0630823917, "Log-likelihood" = -12123.2061042077, 
        "Condition Number" = 1.2595706513915), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.