inst/models/values-1.1.1.3-U002_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-26814.31, 53638.62, 53670.87), param = c(1.3583, 
4.1995, 0.20448), stdev_param = c(0.31173, 0.27164, NA), sigma = c(prop.err = 0.20448), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.3583302230179, 
    lVc = 4.19946104042466, prop.err = 0.204475683723921), SE = c(lCl = 0.0249891397781695, 
    lVc = 0.0288981025147301, prop.err = NA), "%RSE" = c(1.83969548455231, 
    0.68813836434134, NA), "Back-transformed" = c(3.88969295647587, 
    66.6503994879632, 0.204475683723921), "CI Lower" = c(3.7037744046166, 
    62.9802887388556, NA), "CI Upper" = c(4.08494407132343, 70.5343821195349, 
    NA), "BSV(CV%)" = c(27.6732640453767, 31.9453692903754, NA
    ), "Shrink(SD)%" = c(0.208163601848255, 1.09192836193776, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0971726823689707, 0, 0, 0.0737902363812486
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 49.736, 
        setup = 0.305221999999983, table = 0.170999999999992, 
        cwres = 0.488, covariance = 0.0859999999999843, other = 0.25377800000004), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 45036.5412690508, AIC = 53638.6165545145, 
        BIC = 53670.8664767231, "Log-likelihood" = -26814.3082772572, 
        "Condition Number" = 1.33955512888673), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.