inst/models/values-1.1.1.3-U003_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-12857.9, 25725.81, 25754.46), param = c(1.3585, 
4.1988, 0.19903), stdev_param = c(0.32426, 0.26838, NA), sigma = c(prop.err = 0.19903), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.35850348898628, 
    lVc = 4.1987872192011, prop.err = 0.199026211993945), SE = c(lCl = 0.0248973422896922, 
    lVc = 0.0303523811814833, prop.err = NA), "%RSE" = c(1.83270359565074, 
    0.722884480611008, NA), "Back-transformed" = c(3.89036696628248, 
    66.6055041616404, 0.199026211993945), "CI Lower" = c(3.70508275595117, 
    62.7587270753976, NA), "CI Upper" = c(4.08491689100112, 70.6880682792783, 
    NA), "BSV(CV%)" = c(27.3290537289911, 33.2971138756483, NA
    ), "Shrink(SD)%" = c(0.850897476920531, 1.76877818703087, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.105143293387087, 0, 0, 0.0720301242821324
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 11.76, 
        setup = 0.261540000000015, table = 0.0670000000000073, 
        cwres = 0.342999999999989, covariance = 0.039999999999992, 
        other = 0.202459999999984), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 21534.6379289238, AIC = 25725.808255005, 
        BIC = 25754.456931662, "Log-likelihood" = -12857.9041275025, 
        "Condition Number" = 1.49431978727258), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.