inst/models/values-1.1.1.3-U004_saem-unix.R

expected_values[[runno]] <- list(lik = c(-38529.41, 77068.81, 77103.05), param = c(1.3603, 
4.202, 0.20254), stdev_param = c(0.30965, 0.27024, NA), sigma = c(prop.err = 0.20254), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.36028976801313, 
    lVc = 4.20203845942285, prop.err = 0.202538094867792), SE = c(lCl = 0.0247945840922744, 
    lVc = 0.0284974252457414, prop.err = NA), "%RSE" = c(1.82274282107481, 
    0.678180971472011, NA), "Back-transformed" = c(3.89732245757575, 
    66.8224070664193, 0.202538094867792), "CI Lower" = c(3.71245460401986, 
    63.1924310610826, NA), "CI Upper" = c(4.09139611347097, 70.6609005409855, 
    NA), "BSV(CV%)" = c(27.5246017714189, 31.721857393677, NA
    ), "Shrink(SD)%" = c(0.00997418827946017, 0.232972660793573, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0958805840478689, 0, 0, 0.0730277327249844
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 148.786, 
        setup = 0.165215999999982, table = 0.396999999999991, 
        cwres = 0.576000000000022, covariance = 0.144000000000005, 
        other = 0.290784000000059), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 64283.7309401962, AIC = 77068.8144288075, 
        BIC = 77103.047632873, "Log-likelihood" = -38529.4072144038, 
        "Condition Number" = 1.32177725597804), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.