inst/models/values-1.1.1.3-U004_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-38529.3, 77068.6, 77102.83), param = c(1.3599, 
4.2017, 0.20246), stdev_param = c(0.30958, 0.26978, NA), sigma = c(prop.err = 0.20246), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.3599138295542, 
    lVc = 4.20170231514684, prop.err = 0.202460909583025), SE = c(lCl = 0.0247526347877545, 
    lVc = 0.0284909269626392, prop.err = NA), "%RSE" = c(1.82016200216661, 
    0.678080568914447, NA), "Back-transformed" = c(3.89585757954636, 
    66.7999488715828, 0.202460909583025), "CI Lower" = c(3.71136434445318, 
    63.1719974356021, NA), "CI Upper" = c(4.08952203865208, 70.6362526180195, 
    NA), "BSV(CV%)" = c(27.4759549178083, 31.7143838352819, NA
    ), "Shrink(SD)%" = c(-0.0395790850393984, 0.237848385637685, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0958375082014982, 0, 0, 0.0727789843146844
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 43.395, 
        setup = 0.26452000000001, table = 0.343000000000018, 
        cwres = 0.619, covariance = 0.126000000000005, other = 0.282479999999957), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 64283.5132383242, AIC = 77068.5967269356, 
        BIC = 77102.8299310011, "Log-likelihood" = -38529.2983634678, 
        "Condition Number" = 1.32564959320763), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.