inst/models/values-1.1.1.3-U012_saem-unix.R

expected_values[[runno]] <- list(lik = c(-11870.83, 23751.66, 23780.31), param = c(1.3862, 
4.2682, 0.20018), stdev_param = c(0.3094, 0.27964, NA), sigma = c(prop.err = 0.20018), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.38618790537231, 
    lVc = 4.26817039746522, prop.err = 0.200181533914815), SE = c(lCl = 0.0259209479609403, 
    lVc = 0.0287332208282763, prop.err = NA), "%RSE" = c(1.8699447499492, 
    0.673197603482287, NA), "Back-transformed" = c(3.99957419967452, 
    71.3908990878127, 0.200181533914815), "CI Lower" = c(3.80145459225608, 
    67.4815562284917, NA), "CI Upper" = c(4.20801916489775, 75.5267180755144, 
    NA), "BSV(CV%)" = c(28.5191795481002, 31.6952493041092, NA
    ), "Shrink(SD)%" = c(0.903858793424817, 1.25599880664305, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0957272590373819, 0, 0, 0.0781957972236422
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 54.3440000000001, 
        setup = 0.152207999999982, table = 0.0690000000000168, 
        cwres = 0.228999999999985, covariance = 0.0569999999999595, 
        other = 0.175792000000051), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 19558.6518347176, AIC = 23751.6600378653, 
        BIC = 23780.3109118415, "Log-likelihood" = -11870.8300189326, 
        "Condition Number" = 1.23402474979178), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.