inst/models/values-1.1.1.3-U013_saem-unix.R

expected_values[[runno]] <- list(lik = c(-26408.54, 52827.09, 52859.34), param = c(1.3847, 
4.2685, 0.19993), stdev_param = c(0.29816, 0.28231, NA), sigma = c(prop.err = 0.19993), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.38470854126559, 
    lVc = 4.268497006141, prop.err = 0.199934524188877), SE = c(lCl = 0.0259489288645177, 
    lVc = 0.0277021666473343, prop.err = NA), "%RSE" = c(1.87396322700524, 
    0.648991122811607, NA), "Back-transformed" = c(3.99366174757435, 
    71.4142197829902, 0.199934524188877), "CI Lower" = c(3.79562685068661, 
    67.6401510530133, NA), "CI Upper" = c(4.2020290142993, 75.3988675042445, 
    NA), "BSV(CV%)" = c(28.8032553183812, 30.4906541153555, NA
    ), "Shrink(SD)%" = c(0.255372166827239, 1.26977068877542, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0888969304841964, 0, 0, 0.0797005737926471
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 144.038, 
        setup = 0.163580999999935, table = 0.225999999999999, 
        cwres = 0.404999999999973, covariance = 0.114000000000033, 
        other = 0.270419000000089), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 44221.3356869073, AIC = 52827.0867265038, 
        BIC = 52859.3387872925, "Log-likelihood" = -26408.5433632519, 
        "Condition Number" = 1.14373384879924), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.