inst/models/values-1.1.1.3-U013_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-30488.76, 60987.51, 61019.77), param = c(1.2847, 
4.7794, 0.53907), stdev_param = c(0.13053, 0.21567, NA), sigma = c(prop.err = 0.53907), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.28472698293057, 
    lVc = 4.77937502006004, prop.err = 0.539073611568858), SE = c(lCl = 0.0212234576966622, 
    lVc = 0.0216183051862944, prop.err = NA), "%RSE" = c(1.65198193691314, 
    0.452324939883517, NA), "Back-transformed" = c(3.61368122586819, 
    119.029935471503, 0.539073611568858), "CI Lower" = c(3.46644568320371, 
    114.091860809364, NA), "CI Upper" = c(3.76717052439815, 124.181737749231, 
    NA), "BSV(CV%)" = c(21.8202362605935, 13.1088251661183, NA
    ), "Shrink(SD)%" = c(4.32453125650049, 45.5116060244257, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.017038152520783, 0, 0, 0.0465135470677467
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 53.213, 
        setup = 0.254602, table = 0.177999999999997, cwres = 0.444999999999993, 
        covariance = 0.0720000000000027, other = 0.244397999999997), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 52381.7631554003, AIC = 60987.5141949969, 
        BIC = 61019.7662557855, "Log-likelihood" = -30488.7570974984, 
        "Condition Number" = 1.35026071839033), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.