inst/models/values-1.1.1.3-U014_saem-unix.R

expected_values[[runno]] <- list(lik = c(-12671.98, 25353.95, 25382.61), param = c(1.3871, 
4.2708, 0.19503), stdev_param = c(0.30685, 0.27564, NA), sigma = c(prop.err = 0.19503), 
    parFixedDf = structure(list(Estimate = c(lCl = 1.38709570919526, 
    lVc = 4.27081563951921, prop.err = 0.195033854682915), SE = c(lCl = 0.0255392557276785, 
    lVc = 0.0288493520824784, prop.err = NA), "%RSE" = c(1.84120357076841, 
    0.675499822926708, NA), "Back-transformed" = c(4.00320667696209, 
    71.5799952886996, 0.195033854682915), "CI Lower" = c(3.80775466169249, 
    67.6448989658357, NA), "CI Upper" = c(4.20869124255782, 75.7440073658474, 
    NA), "BSV(CV%)" = c(28.0954721030635, 31.4216897782819, NA
    ), "Shrink(SD)%" = c(0.839688446752551, 2.55265293682764, 
    NA)), class = "data.frame", row.names = c("lCl", "lVc", "prop.err"
    )), omega = structure(c(0.0941570232222801, 0, 0, 0.0759749581432831
    ), .Dim = c(2L, 2L), .Dimnames = list(c("eta.Vc", "eta.Cl"
    ), c("eta.Vc", "eta.Cl"))), time = structure(list(saem = 57.253, 
        setup = 55.634538, table = 0.0900000000000034, cwres = 55.746, 
        covariance = 0.063999999999993, other = 0.492462000000046), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 21159.106611104, AIC = 25353.952691318, 
        BIC = 25382.6057616483, "Log-likelihood" = -12671.976345659, 
        "Condition Number" = 1.28784577784012), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.