inst/models/values-1.1.1.3-U049_solve_saem-unix.R

expected_values[[runno]] <- list(lik = c(-42959.45, 85936.9, 85998.53), param = c(1.2372, 
4.3677, 2.4646, 3.8019, 0.44981), stdev_param = c(0.27943, 0.2215, 
0.15494, 0.12082, NA), sigma = c(prop.err = 0.44981), parFixedDf = structure(list(
    Estimate = c(lCl = 1.23718725491078, lVc = 4.36766400869235, 
    lQ = 2.46462483900143, lVp = 3.80194352684484, prop.err = 0.449812845060175
    ), SE = c(lCl = 0.0210750956916505, lVc = 0.0325253616329976, 
    lQ = 0.11559162187062, lVp = 0.050093369982619, prop.err = NA
    ), "%RSE" = c(1.70346854188781, 0.744685524533639, 4.69002908846173, 
    1.31757270009191, NA), "Back-transformed" = c(3.4459073617554, 
    78.8592019599904, 11.7590697799963, 44.7881469248963, 0.449812845060175
    ), "CI Lower" = c(3.30646891326582, 73.9889288079157, 9.37521423398499, 
    40.5997669244725, NA), "CI Upper" = c(3.59122612590111, 84.0500576770241, 
    14.7490733160609, 49.4086113523216, NA), "BSV(CV%)" = c(22.4242481430755, 
    28.4970616197165, 12.1262204485419, 15.5871955580273, NA), 
    "Shrink(SD)%" = c(2.54134715430973, 7.32891894310399, 85.5581697547711, 
    71.5687532814528, NA)), class = "data.frame", row.names = c("lCl", 
"lVc", "lQ", "lVp", "prop.err")), omega = structure(c(0.0780791677400785, 
0, 0, 0, 0, 0.0490612612080921, 0, 0, 0, 0, 0.0240056123049932, 
0, 0, 0, 0, 0.0145974590158069), .Dim = c(4L, 4L), .Dimnames = list(
    c("eta.Vc", "eta.Cl", "eta.Vp", "eta.Q"), c("eta.Vc", "eta.Cl", 
    "eta.Vp", "eta.Q"))), time = structure(list(saem = 121.918, 
    setup = 0.294889999999987, table = 0.509000000000015, cwres = 0.858000000000061, 
    covariance = 0.146000000000072, other = 0.400109999999955), class = "data.frame", row.names = "elapsed"), 
    objDf = structure(list(OBJF = 73127.2789970533, AIC = 85936.9033792624, 
        BIC = 85998.5347920423, "Log-likelihood" = -42959.4516896312, 
        "Condition Number" = 32.1225319420777), row.names = "FOCEi", class = "data.frame")) 
nlmixrdevelopment/nlmixr.examples documentation built on Nov. 4, 2019, 10:08 p.m.