| dynmodel.mcmc | R Documentation | 
Fit a non-population dynamic model using mcmc
dynmodel.mcmc(
  system,
  model,
  evTable,
  inits,
  data,
  fixPars = NULL,
  nsim = 500,
  squared = TRUE,
  seed = NULL
)
| system | an RxODE object | 
| model | a list of statistical measurement models | 
| evTable | an Event Table object | 
| inits | initial values of system parameters | 
| data | input data | 
| fixPars | fixed system parameters | 
| nsim | number of mcmc iterations | 
| squared | if parameters be squared during estimation | 
| seed | random number seed | 
A dyn.mcmc object detailing the model fit
Wenping Wang
ode <- "
   dose=200;
   pi = 3.1415926535897931;
   if (t<=0) {
      fI = 0;
   } else {
      fI = F*dose*sqrt(MIT/(2.0*pi*CVI2*t^3))*exp(-(t-MIT)^2/(2.0*CVI2*MIT*t));
   }
   C2 = centr/V2;
   C3 = peri/V3;
   d/dt(centr) = fI - CL*C2 - Q*C2 + Q*C3;
   d/dt(peri)  =              Q*C2 - Q*C3;
"
sys1 <- RxODE(model = ode)
## ------------------------------------------------------------------------
dat <- invgaussian
mod <- cp ~ C2 + prop(.1)
inits <- c(MIT = 190, CVI2 = .65, F = .92)
fixPars <- c(CL = .0793, V2 = .64, Q = .292, V3 = 9.63)
ev <- eventTable()
ev$add.sampling(c(0, dat$time))
(fit <- dynmodel.mcmc(sys1, mod, ev, inits, dat, fixPars))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.