PcaStandards | R Documentation |
This function will generate a principal component analysis (PCA) plot of the IQR-filtered expression values that were used to generate the cosine similarity scores.
PcaStandards(
label,
label.name,
exps,
text.label = NULL,
col.palette = c("blue", "magenta", "green", "red", "goldenrod", "mediumslateblue",
"olivedrab", "navyblue", "plum", "tomato", "thistle", "limegreen", "burlywood4",
"cornflowerblue", "deeppink", "chartreuse", "forestgreen", "darkslateblue",
"blueviolet", "gray50", "darkorange", "black", "lightsalmon4", "mediumseagreen",
"palegreen4", "palevioletred4", "peachpuff4", "plum4", "mediumspringgreen",
"darkred", "khaki4", "lawngreen", "lightseagreen", "orange", "orchid3", "sienna4",
"snow4", "turquoise3", "wheat3", "goldenrod2",
"darkorange3")
)
label |
vector to be used for the point colours |
label.name |
name of the label |
exps |
an expression matrix of the IQR-filtered values as obtained by the function CosineSimScore(). |
text.label |
a vector of characters to label each point. |
col.palette |
a vector of colours to be used. There are 41 default colours. |
The function will plot two panels, a PCA plot on the left and a legend on the right. This is to accommodate that fact that the cell types names are NOT abbreviated and the legend might not fit in the plot area.
CosineSimScore
for details on cosine
similarity calculation.
## Load the expression set for the standard cell types
library(Biobase)
library(hgu133plus2CellScore) # eset.std
## Locate the external data files in the CellScore package
rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
package = "CellScore")
if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
## Load the expression set with normalized expressions of 48 test samples
load(rdata.path)
## Import the cell change info for the loaded test samples
cell.change <- read.delim(file= tsvdata.path, sep="\t",
header=TRUE, stringsAsFactors=FALSE)
## Combine the standards and the test data
eset <- combine(eset.std, eset48)
## Generate cosine similarity for the combined data
## NOTE: May take 1-2 minutes on the full eset object
## so we subset it for 4 cell types
pdata <- pData(eset)
sel.samples <- pdata$general_cell_type %in% c("ESC", "EC", "FIB", "KER")
eset.sub <- eset[, sel.samples]
cs <- CosineSimScore(eset.sub, cell.change, iqr.cutoff=0.1)
PcaStandards(cs$pdataSub$experiment_id, "Experiment ID", cs$esetSub.IQR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.