View source: R/RugplotCellScore.R
RugplotCellScore | R Documentation |
This function will plot a rugplot of all CellScore values for each transition selected in the cell.change data frame. The function will only plot the scores for the test samples (annotated by the cellscore$column sub_cell_type1). Standards are not included. Samples are coloured by a secondary property, which must be a single column in the cellscore data frame.
RugplotCellScore(cellscore, cell.change, colour.by = NULL)
cellscore |
a data.frame of CellScore values as calculated by CellScore(). |
cell.change |
a data frame containing three columns, one for the start (donor) test and target cell type. Each row of the data. frame describes one transition from the start to a target cell type. |
colour.by |
the name of the column in the cellscore argument that contains the secondary property. |
This function outputs the plot on the active graphical device and returns invisibly NULL.
CellScore
for details on CellScore.
## Load the expression set for the standard cell types
library(Biobase)
library(hgu133plus2CellScore) # eset.std
## Locate the external data files in the CellScore package
rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
package = "CellScore")
if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
## Load the expression set with normalized expressions of 48 test samples
load(rdata.path)
## Import the cell change info for the loaded test samples
cell.change <- read.delim(file= tsvdata.path, sep="\t",
header=TRUE, stringsAsFactors=FALSE)
## Combine the standards and the test data
eset <- combine(eset.std, eset48)
## Generate cosine similarity for the combined data
## NOTE: May take 1-2 minutes on the full eset object
## so we subset it for 4 cell types
pdata <- pData(eset)
sel.samples <- pdata$general_cell_type %in% c("ESC", "EC", "FIB", "KER",
"ASC", "NPC", "MSC", "iPS", "piPS")
eset.sub <- eset[, sel.samples]
cs <- CosineSimScore(eset.sub, cell.change, iqr.cutoff=0.1)
## Generate the on/off scores for the combined data
individ.OnOff <- OnOff(eset.sub, cell.change, out.put="individual")
## Generate the CellScore values for all samples
cellscore <- CellScore(data=eset.sub, transitions=cell.change, scores.onoff=individ.OnOff$scores,
scores.cosine=cs$cosine.samples)
## Rugplot of CellScore, colour samples by transition induction method
RugplotCellScore(cellscore, cell.change,
"transition_induction_method")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.