vary.n | R Documentation |
Function to run Cochran estimator on fixed big N with a range of observed trips This function can be used to see the relationship between observer coverage and CV of discard rate. This function samples from the observed trips and is essentially one iteration of a bootstrap.
vary.n(N, bdat)
N |
Number of total commerical trips |
bdat |
fishery observer data |
dataframe of CV values (RSE of discard rate) for range of observed trips
data(eflalo)
dm = make.obs.flag.dat(eflalo, obs_level = .1)
dmo = dm[dm$OBSFLAG==1&dm$FY==1800,] # one year of data
bspec = 'LE_KG_BSS' # European seabass (FAO code BSS)
bdat = get.bydat(dmo, aggfact = 'DOCID',load = F, bspec = bspec, catch_disp = 1) # unstratified
nall = ddply(bdat, c('YEAR'), function(x) varyn(x, N = 5000))
plot(nall[,c(3:2)], typ='l')
# do it 100 times (slowly..)
nmat = matrix(NaN, nrow = nrow(bdat), ncol = 100)
for(i in 1:100){
nmat[,i] = vary.n(5000, bdat)[,1]
}
nq = apply(nmat, 1, quantile, probs = c(.025, .5, .975), na.rm = T)
matplot((1:nrow(bdat))/nrow(bdat)*100, t(nq), typ='l', lty = c(2,1,2), col = c(2,1,2), xlab = '% Observed trips', ylab = 'CV')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.