# Number of clusters
nc <- length(unique(data01$class))
plot_hclust_comparison(data01, nc, mode = "sca")
# Create a subset
set.seed(3) # changes a lot depending on the seed
data01b <- caret::createDataPartition(
data01$class,
p = .2,
list = F
)
data01b <- data01[data01b,]
data01_training <- data01b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data01b, nc, mode = "sca")
pcsca
data01_single <- hclust(dist(data01_training), method = "single")
data01_complete <- hclust(dist(data01_training), method = "complete")
data01_average <- hclust(dist(data01_training), method = "average")
data01_ward <- hclust(dist(data01_training), method = "ward.D")
data01_ward2 <- hclust(dist(data01_training), method = "ward.D2")
data01_mcquitty <- hclust(dist(data01_training), method = "mcquitty")
data01_median <- hclust(dist(data01_training), method = "median")
data01_centroid <- hclust(dist(data01_training), method = "centroid")
######## PLURALITY #############################################################
data01_sc_plurality <- mc_hclust(data01_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data01_sca_plurality <- mc_hclust(data01_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data01_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data01_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data01_sc_tapproval <- mc_hclust(data01_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data01_sca_tapproval <- mc_hclust(data01_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data01_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data01_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data01_sc_borda <- mc_hclust(data01_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data01_sca_borda <- mc_hclust(data01_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data01_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data01_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data01_single,
data01_complete,
data01_average,
data01_ward,
data01_ward2,
data01_mcquitty,
data01_median,
data01_centroid,
# aggregation methods
data01_sc_plurality,
data01_sca_plurality,
data01_sc_tapproval,
data01_sca_tapproval,
data01_sc_borda,
data01_sca_borda,
file = "experiments/IPMU2022/results/results_data01.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.