# Number of clusters
nc <- length(unique(data02$class))
plot_hclust_comparison(data02, nc, mode = "sca")
# Create a subset
set.seed(2) # changes a lot depending on the seed
data02b <- caret::createDataPartition(
data02$class,
p = .15,
list = F
)
data02b <- data02[data02b,]
data02_training <- data02b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data02b, nc, mode = "sca")
pcsca
data02_single <- hclust(dist(data02_training), method = "single")
data02_complete <- hclust(dist(data02_training), method = "complete")
data02_average <- hclust(dist(data02_training), method = "average")
data02_ward <- hclust(dist(data02_training), method = "ward.D")
data02_ward2 <- hclust(dist(data02_training), method = "ward.D2")
data02_mcquitty <- hclust(dist(data02_training), method = "mcquitty")
data02_median <- hclust(dist(data02_training), method = "median")
data02_centroid <- hclust(dist(data02_training), method = "centroid")
######## PLURALITY #############################################################
data02_sc_plurality <- mc_hclust(data02_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data02_sca_plurality <- mc_hclust(data02_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data02_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data02_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data02_sc_tapproval <- mc_hclust(data02_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data02_sca_tapproval <- mc_hclust(data02_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data02_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data02_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data02_sc_borda <- mc_hclust(data02_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data02_sca_borda <- mc_hclust(data02_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data02_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data02_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data02_single,
data02_complete,
data02_average,
data02_ward,
data02_ward2,
data02_mcquitty,
data02_median,
data02_centroid,
# aggregation methods
data02_sc_plurality,
data02_sca_plurality,
data02_sc_tapproval,
data02_sca_tapproval,
data02_sc_borda,
data02_sca_borda,
file = "experiments/WCCI2022/results/results_data02.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.