# Number of clusters
nc <- length(unique(data04$class))
plot_hclust_comparison(data04, nc, mode = "sca")
# Create a subset
set.seed(2) # changes a lot depending on the seed
data04b <- caret::createDataPartition(
data04$class,
p = .4,
list = F
)
data04b <- data04[data04b,]
data04_training <- data04b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data04b, nc, mode = "sca")
pcsca
data04_single <- hclust(dist(data04_training), method = "single")
data04_complete <- hclust(dist(data04_training), method = "complete")
data04_average <- hclust(dist(data04_training), method = "average")
data04_ward <- hclust(dist(data04_training), method = "ward.D")
data04_ward2 <- hclust(dist(data04_training), method = "ward.D2")
data04_mcquitty <- hclust(dist(data04_training), method = "mcquitty")
data04_median <- hclust(dist(data04_training), method = "median")
data04_centroid <- hclust(dist(data04_training), method = "centroid")
######## PLURALITY #############################################################
data04_sc_plurality <- mc_hclust(data04_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data04_sca_plurality <- mc_hclust(data04_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data04_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data04_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data04_sc_tapproval <- mc_hclust(data04_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data04_sca_tapproval <- mc_hclust(data04_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data04_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data04_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data04_sc_borda <- mc_hclust(data04_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data04_sca_borda <- mc_hclust(data04_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
plot_mchclust_tiles(data04_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data04_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data04_single,
data04_complete,
data04_average,
data04_ward,
data04_ward2,
data04_mcquitty,
data04_median,
data04_centroid,
# aggregation methods
data04_sc_plurality,
data04_sca_plurality,
data04_sc_tapproval,
data04_sca_tapproval,
data04_sc_borda,
data04_sca_borda,
file = "experiments/IPMU2022/results/results_data04.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.