# Number of clusters
nc <- length(unique(data07$class))
plot_hclust_comparison(data07, nc, mode = "sca")
# Create a subset
set.seed(2) # changes a lot depending on the seed
data07b <- caret::createDataPartition(
data07$class,
p = .08,
list = F
)
data07b <- data07[data07b,]
data07_training <- data07b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data07b, nc, mode = "sca")
pcsca
data07_single <- hclust(dist(data07_training), method = "single")
data07_complete <- hclust(dist(data07_training), method = "complete")
data07_average <- hclust(dist(data07_training), method = "average")
data07_ward <- hclust(dist(data07_training), method = "ward.D")
data07_ward2 <- hclust(dist(data07_training), method = "ward.D2")
data07_mcquitty <- hclust(dist(data07_training), method = "mcquitty")
data07_median <- hclust(dist(data07_training), method = "median")
data07_centroid <- hclust(dist(data07_training), method = "centroid")
######## PLURALITY #############################################################
data07_sc_plurality <- mc_hclust(data07_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data07_sca_plurality <- mc_hclust(data07_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data07_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data07_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data07_sc_tapproval <- mc_hclust(data07_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data07_sca_tapproval <- mc_hclust(data07_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data07_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data07_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data07_sc_borda <- mc_hclust(data07_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data07_sca_borda <- mc_hclust(data07_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data07_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data07_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data07_single,
data07_complete,
data07_average,
data07_ward,
data07_ward2,
data07_mcquitty,
data07_median,
data07_centroid,
# aggregation methods
data07_sc_plurality,
data07_sca_plurality,
data07_sc_tapproval,
data07_sca_tapproval,
data07_sc_borda,
data07_sca_borda,
file = "experiments/IPMU2022/results/results_data07.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.