# Number of clusters
nc <- length(unique(data08$class))
plot_hclust_comparison(data08, nc, mode = "sca")
# Create a subset
set.seed(14) # changes a lot depending on the seed
data08b <- caret::createDataPartition(
data08$class,
p = .16,
list = F
)
data08b <- data08[data08b,]
data08_training <- data08b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data08b, nc, mode = "sca")
pcsca
data08_single <- hclust(dist(data08_training), method = "single")
data08_complete <- hclust(dist(data08_training), method = "complete")
data08_average <- hclust(dist(data08_training), method = "average")
data08_ward <- hclust(dist(data08_training), method = "ward.D")
data08_ward2 <- hclust(dist(data08_training), method = "ward.D2")
data08_mcquitty <- hclust(dist(data08_training), method = "mcquitty")
data08_median <- hclust(dist(data08_training), method = "median")
data08_centroid <- hclust(dist(data08_training), method = "centroid")
######## PLURALITY #############################################################
data08_sc_plurality <- mc_hclust(data08_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data08_sca_plurality <- mc_hclust(data08_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data08_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data08_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data08_sc_tapproval <- mc_hclust(data08_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data08_sca_tapproval <- mc_hclust(data08_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data08_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data08_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data08_sc_borda <- mc_hclust(data08_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data08_sca_borda <- mc_hclust(data08_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data08_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data08_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data08_single,
data08_complete,
data08_average,
data08_ward,
data08_ward2,
data08_mcquitty,
data08_median,
data08_centroid,
# aggregation methods
data08_sc_plurality,
data08_sca_plurality,
data08_sc_tapproval,
data08_sca_tapproval,
data08_sc_borda,
data08_sca_borda,
file = "experiments/IPMU2022/results/results_data08.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.