# Number of clusters
nc <- length(unique(data10$class))
plot_hclust_comparison(data10, nc, mode = "sca")
# Create a subset
set.seed(3) # changes a lot depending on the seed
data10b <- caret::createDataPartition(
data10$class,
p = .08,
list = F
)
data10b <- data10[data10b,]
data10_training <- data10b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data10b, nc, mode = "sca")
pcsca
data10_single <- hclust(dist(data10_training), method = "single")
data10_complete <- hclust(dist(data10_training), method = "complete")
data10_average <- hclust(dist(data10_training), method = "average")
data10_ward <- hclust(dist(data10_training), method = "ward.D")
data10_ward2 <- hclust(dist(data10_training), method = "ward.D2")
data10_mcquitty <- hclust(dist(data10_training), method = "mcquitty")
data10_median <- hclust(dist(data10_training), method = "median")
data10_centroid <- hclust(dist(data10_training), method = "centroid")
######## PLURALITY #############################################################
data10_sc_plurality <- mc_hclust(data10_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data10_sca_plurality <- mc_hclust(data10_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data10_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data10_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data10_sc_tapproval <- mc_hclust(data10_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data10_sca_tapproval <- mc_hclust(data10_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data10_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data10_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data10_sc_borda <- mc_hclust(data10_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data10_sca_borda <- mc_hclust(data10_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data10_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data10_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data10_single,
data10_complete,
data10_average,
data10_ward,
data10_ward2,
data10_mcquitty,
data10_median,
data10_centroid,
# aggregation methods
data10_sc_plurality,
data10_sca_plurality,
data10_sc_tapproval,
data10_sca_tapproval,
data10_sc_borda,
data10_sca_borda,
file = "experiments/IPMU2022/results/results_data10.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.