# Number of clusters
nc <- length(unique(data14$class))
plot_hclust_comparison(data14, nc, mode = "sca")
# Create a subset
set.seed(1) # changes a lot depending on the seed
data14b <- caret::createDataPartition(
data14$class,
p = .18,
list = F
)
data14b <- data14[data14b,]
data14_training <- data14b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data14b, nc, mode = "sca")
pcsca
data14_single <- hclust(dist(data14_training), method = "single")
data14_complete <- hclust(dist(data14_training), method = "complete")
data14_average <- hclust(dist(data14_training), method = "average")
data14_ward <- hclust(dist(data14_training), method = "ward.D")
data14_ward2 <- hclust(dist(data14_training), method = "ward.D2")
data14_mcquitty <- hclust(dist(data14_training), method = "mcquitty")
data14_median <- hclust(dist(data14_training), method = "median")
data14_centroid <- hclust(dist(data14_training), method = "centroid")
######## PLURALITY #############################################################
data14_sc_plurality <- mc_hclust(data14_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data14_sca_plurality <- mc_hclust(data14_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data14_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data14_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data14_sc_tapproval <- mc_hclust(data14_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data14_sca_tapproval <- mc_hclust(data14_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data14_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data14_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data14_sc_borda <- mc_hclust(data14_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data14_sca_borda <- mc_hclust(data14_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data14_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data14_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data14_single,
data14_complete,
data14_average,
data14_ward,
data14_ward2,
data14_mcquitty,
data14_median,
data14_centroid,
# aggregation methods
data14_sc_plurality,
data14_sca_plurality,
data14_sc_tapproval,
data14_sca_tapproval,
data14_sc_borda,
data14_sca_borda,
file = "experiments/IPMU2022/results/results_data14.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.