# Number of clusters
nc <- length(unique(data15$class))
plot_hclust_comparison(data15, nc, mode = "sca")
# Create a subset
set.seed(1) # changes a lot depending on the seed
data15b <- caret::createDataPartition(
data15$class,
p = .2,
list = F
)
data15b <- data15[data15b,]
data15_training <- data15b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data15b, nc, mode = "sca")
pcsca
data15_single <- hclust(dist(data15_training), method = "single")
data15_complete <- hclust(dist(data15_training), method = "complete")
data15_average <- hclust(dist(data15_training), method = "average")
data15_ward <- hclust(dist(data15_training), method = "ward.D")
data15_ward2 <- hclust(dist(data15_training), method = "ward.D2")
data15_mcquitty <- hclust(dist(data15_training), method = "mcquitty")
data15_median <- hclust(dist(data15_training), method = "median")
data15_centroid <- hclust(dist(data15_training), method = "centroid")
######## PLURALITY #############################################################
data15_sc_plurality <- mc_hclust(data15_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data15_sca_plurality <- mc_hclust(data15_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data15_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data15_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data15_sc_tapproval <- mc_hclust(data15_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data15_sca_tapproval <- mc_hclust(data15_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data15_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data15_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data15_sc_borda <- mc_hclust(data15_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data15_sca_borda <- mc_hclust(data15_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data15_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data15_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data15_single,
data15_complete,
data15_average,
data15_ward,
data15_ward2,
data15_mcquitty,
data15_median,
data15_centroid,
# aggregation methods
data15_sc_plurality,
data15_sca_plurality,
data15_sc_tapproval,
data15_sca_tapproval,
data15_sc_borda,
data15_sca_borda,
file = "experiments/IPMU2022/results/results_data15.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.