# Number of clusters
nc <- length(unique(data16$class))
plot_hclust_comparison(data16, nc, mode = "sca")
# Create a subset
set.seed(3) # changes a lot depending on the seed
data16b <- caret::createDataPartition(
data16$class,
p = .15,
list = F
)
data16b <- data16[data16b,]
data16_training <- data16b[,1:2]
# Check the new visualization
pcsca <- plot_hclust_comparison(data16b, nc, mode = "sca")
pcsca
data16_single <- hclust(dist(data16_training), method = "single")
data16_complete <- hclust(dist(data16_training), method = "complete")
data16_average <- hclust(dist(data16_training), method = "average")
data16_ward <- hclust(dist(data16_training), method = "ward.D")
data16_ward2 <- hclust(dist(data16_training), method = "ward.D2")
data16_mcquitty <- hclust(dist(data16_training), method = "mcquitty")
data16_median <- hclust(dist(data16_training), method = "median")
data16_centroid <- hclust(dist(data16_training), method = "centroid")
######## PLURALITY #############################################################
data16_sc_plurality <- mc_hclust(data16_training,
linkage_methods = c("single", "complete"),
aggregation_method = "plurality",
verbose = F)
data16_sca_plurality <- mc_hclust(data16_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "plurality",
verbose = F)
# plot_mchclust_tiles(data16_sc_plurality, 10) + ggtitle("SC")+ plot_mchclust_tiles(data16_sca_plurality, 10) + ggtitle("SCA")
######## TAPPROVAL #############################################################
data16_sc_tapproval <- mc_hclust(data16_training,
linkage_methods = c("single", "complete"),
aggregation_method = nc,
verbose = F)
data16_sca_tapproval <- mc_hclust(data16_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = nc,
verbose = F)
# plot_mchclust_tiles(data16_sc_tapproval, 10) + ggtitle("SC")+ plot_mchclust_tiles(data16_sca_tapproval, 10) + ggtitle("SCA")
######## BORDA #################################################################
data16_sc_borda <- mc_hclust(data16_training,
linkage_methods = c("single", "complete"),
aggregation_method = "borda",
verbose = F)
data16_sca_borda <- mc_hclust(data16_training,
linkage_methods = c("single", "complete", "average"),
aggregation_method = "borda",
verbose = F)
# plot_mchclust_tiles(data16_sc_borda, 10) + ggtitle("SC")+ plot_mchclust_tiles(data16_sca_borda, 10) + ggtitle("SCA")
################################################################################
# Save results
save(data16_single,
data16_complete,
data16_average,
data16_ward,
data16_ward2,
data16_mcquitty,
data16_median,
data16_centroid,
# aggregation methods
data16_sc_plurality,
data16_sca_plurality,
data16_sc_tapproval,
data16_sca_tapproval,
data16_sc_borda,
data16_sca_borda,
file = "experiments/IPMU2022/results/results_data16.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.