bngeneplot | R Documentation |
Plot gene relationship within the specified pathway
bngeneplot( results, exp, expSample = NULL, algo = "hc", R = 20, returnNet = FALSE, algorithm.args = NULL, pathNum = NULL, convertSymbol = TRUE, expRow = "ENSEMBL", interactive = FALSE, cexCategory = 1, cl = NULL, showDir = FALSE, chooseDir = FALSE, scoreType = "bic-g", labelSize = 4, layout = "nicely", clusterAlpha = 0.2, strType = "normal", delZeroDegree = TRUE, otherVar = NULL, otherVarName = NULL, onlyDf = FALSE, disc = FALSE, tr = NULL, remainCont = NULL, sp = "hsapiens", compareRef = FALSE, compareRefType = "intersection", pathDb = "reactome", dep = NULL, depMeta = NULL, sizeDep = FALSE, showDepHist = TRUE, cellLineName = "5637_URINARY_TRACT", showLineage = FALSE, orgDb = org.Hs.eg.db, shadowText = TRUE, bgColor = "white", textColor = "black", strengthPlot = FALSE, nStrength = 10, strThresh = NULL, hub = NULL, seed = 1 )
results |
the enrichment analysis result |
exp |
gene expression matrix |
expSample |
candidate samples to be included in the inference default to all |
algo |
structure learning method used in boot.strength() default to "hc" |
R |
the number of bootstrap |
returnNet |
whether to return the network |
algorithm.args |
parameters to pass to bnlearn structure learnng function |
pathNum |
the pathway number (the number of row of the original result, ordered by p-value) |
convertSymbol |
whether the label of resulting network is converted to symbol, default to TRUE |
expRow |
the type of the identifier of rows of expression matrix |
interactive |
whether to use bnviewer (default to FALSE) |
cexCategory |
scaling factor of size of nodes |
cl |
cluster object from parallel::makeCluster() |
showDir |
show the confidence of direction of edges |
chooseDir |
if undirected edges are present, choose direction of edges (default: FALSE) |
scoreType |
score type to use on choosing direction |
labelSize |
the size of label of the nodes |
layout |
ggraph layout, default to "nicely" |
clusterAlpha |
if specified multiple pathways, the parameter is passed to geom_mark_hull() |
strType |
"normal" or "ms" for multiscale implementation |
delZeroDegree |
delete zero degree nodes |
otherVar |
other variables to be included in the inference |
otherVarName |
the names of other variables |
onlyDf |
return only data.frame used for inference |
disc |
discretize the expressoin data |
tr |
Specify data.frame if one needs to discretize as the same parametersas the other dataset |
remainCont |
Specify characters when perform discretization, if some columns are to be remain continuous |
sp |
query to graphite::pathways(), default to "hsapiens" |
compareRef |
whether compare to the reference network |
compareRefType |
"intersection" or "difference" |
pathDb |
query to graphite::pathways(), default to "reactome" |
dep |
the tibble storing dependency score from library depmap |
depMeta |
depmap::depmap_metadata(), needed for showLineage |
sizeDep |
whether to reflect DepMap score to the node size |
showDepHist |
whether to show depmap histogram |
cellLineName |
the cell line name to be included |
showLineage |
show the dependency score across the lineage |
orgDb |
perform clusterProfiler::setReadable based on this organism database |
shadowText |
whether to use shadow text for the better readability default: TRUE |
bgColor |
color for text background when shadowText is TRUE |
textColor |
color for text when shadowText is TRUE |
strengthPlot |
append the barplot depicting edges with high strength |
nStrength |
specify how many edges are included in the strength plot |
strThresh |
the threshold for strength |
hub |
visualize the genes with top-n hub scores |
seed |
A random seed to make the analysis reproducible, default is 1. |
ggplot2 object
data("exampleEaRes");data("exampleGeneExp") res <- bngeneplot(results = exampleEaRes, exp = exampleGeneExp, pathNum = 1, R = 10, convertSymbol = TRUE, expRow = "ENSEMBL")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.