skip_on_cran()
context("GDF examples")
library(MARSS)
library(lubridate)
library(tidyverse)
library("tseries")
library("dplyr")
library(quantmod)
# 2) Get data from Quantmod and prepare data frame for estimation
# getSymbols('GDPC1',src='FRED')
# getSymbols('PAYEMS',from = "1947-01-01",src='FRED')
load("GDP.RData")
GDP <- data.frame(date = index(GDPC1), coredata(GDPC1))
Emp <- data.frame(date = index(PAYEMS), coredata(PAYEMS))
Emp <- Emp %>% filter(date >= as.Date("1947-01-01") & date <= as.Date("2020-06-01"))
Emp$PAYEMS <- as.numeric(Emp$PAYEMS)
Emp <- Emp %>% mutate(rate = PAYEMS / lag(PAYEMS, 1) - 1)
Emp <- Emp %>% mutate(norm_rate = scale(rate, center = TRUE, scale = TRUE))
Emp <- select(Emp, -c(rate))
GDP <- GDP %>% mutate(rate = GDPC1 / lag(GDPC1, 1) - 1)
GDP <- GDP %>% mutate(norm_rate = scale(rate, center = TRUE, scale = TRUE))
GDP <- select(GDP, -c(rate, GDPC1))
months <- lapply(X = GDP$date, FUN = seq.Date, by = "month", length.out = 3)
months <- data.frame(date = do.call(what = c, months))
m_GDP <- left_join(x = months, y = GDP, by = "date")
df <- cbind(m_GDP, Emp$norm_rate)
names(df) <- c("date", "S01_GDP", "S02_Emp")
# stop gather complaining
suppressWarnings(df_marss <- df %>% gather(key = "serie", value = "value", -date))
df_marss <- df_marss %>% spread(key = date, value = value)
df_marss$serie <- NULL
df_marss <- as.matrix(df_marss)
# 3) Define State Space matrices
# Matrix Z
Z <- matrix(list(
"0.33*z1", "z2",
"0.67*z1", 0,
"z1", 0,
"0.67*z1", 0,
"0.33*z1", 0,
1 / 3, 0,
2 / 3, 0,
1, 0,
2 / 3, 0,
1 / 3, 0,
0, 1,
0, 0
), 2, 12)
m <- nrow(Z)
p <- ncol(Z)
# Matrix R
R <- matrix(list(0), m, m)
# Matrix B
B <- matrix(list(
"b1", 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"b2", 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b6", 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b7", 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b11", 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b12", 0
), 12, 12)
# Matrix Q
Q <- matrix(list(
"q1", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "q6", 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q11", 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), 12, 12)
x0 <- matrix(0, p, 1)
A <- matrix(0, (length(df) - 1), 1)
U <- matrix(0, p, 1)
V0 <- 5 * diag(1, p)
U <- matrix(0, p, 1)
# 4) Estimation
# Define model
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 0)
# Estimation
kf_ss <- try(MARSS(df_marss, model = model.gen, method = "BFGS", silent = TRUE), silent = TRUE)
test_that("GDF example for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF example for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF example for numerical stabilty", {
# Hmm on the intel chip (old Mac) it was -1614.4923772
# updated to new value
expect_true(all.equal(kf_ss$logLik, -1614.534556))
})
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 1)
kf_ss <- try(MARSS(df_marss, model = model.gen, method = "BFGS", silent = TRUE), silent = TRUE)
test_that("GDF example for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF example for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF example for numerical stabilty", {
# ok this really changed -1554.193852
expect_true(all.equal(kf_ss$logLik, -1553.064905))
})
# THIS One should work; scaling is different
GDP <- data.frame(date = index(GDPC1), coredata(GDPC1))
Emp <- data.frame(date = index(PAYEMS), coredata(PAYEMS))
Emp <- Emp %>% filter(date >= as.Date("1947-01-01") & date <= as.Date("2020-06-01"))
Emp$PAYEMS <- as.numeric(Emp$PAYEMS)
Emp <- Emp %>% mutate(rate = PAYEMS / lag(PAYEMS, 1) - 1)
GDP <- GDP %>% mutate(rate = GDPC1 / lag(GDPC1, 1) - 1)
GDP <- select(GDP, -c(GDPC1))
months <- lapply(X = GDP$date, FUN = seq.Date, by = "month", length.out = 3)
months <- data.frame(date = do.call(what = c, months))
m_GDP <- left_join(x = months, y = GDP, by = "date")
df <- cbind(m_GDP, Emp$rate)
names(df) <- c("date", "S01_GDP", "S02_Emp")
df_marss <- df %>% gather(key = "serie", value = "value", -date)
df_marss <- df_marss %>% spread(key = date, value = value)
df_marss$serie <- NULL
df_marss <- as.matrix(df_marss)
# Define model
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 0)
kf_ss <- try(MARSS(df_marss, model = model.gen, method = "BFGS", silent = TRUE), silent = TRUE)
# Estimation
test_that("GDF works example for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF works example for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF works example for numerical stabilty", {
expect_true(all.equal(kf_ss$logLik, 4260.399772))
})
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 1)
kf_ss <- try(MARSS(df_marss, model = model.gen, method = "BFGS", silent = TRUE), silent = TRUE)
test_that("GDF works example for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF works example for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF works example for numerical stabilty", {
expect_true(all.equal(kf_ss$logLik, 4301.624359))
})
### More difficult
# getSymbols('GDPC1',src='FRED')
# getSymbols('PAYEMS',from = "1947-01-01",src='FRED')
# getSymbols('INDPRO',from = "1947-01-01",src='FRED')
# getSymbols('RPI',from = "1947-01-01",src='FRED')
# save(GDPC1, PAYEMS, INDPRO, RPI, file="tests/testthat/GDP.RData")
load("GDP.RData")
GDP <- data.frame(date = index(GDPC1), coredata(GDPC1))
Emp <- data.frame(date = index(PAYEMS), coredata(PAYEMS))
Indpr <- data.frame(date = index(INDPRO), coredata(INDPRO))
Inc <- data.frame(date = index(RPI), coredata(RPI))
Emp <- Emp %>% filter(date >= as.Date("1947-01-01") & date <= as.Date("2020-06-01"))
Indpr <- Indpr %>% filter(date >= as.Date("1947-01-01") & date <= as.Date("2020-06-01"))
Inc <- Inc %>% filter(date >= as.Date("1947-01-01") & date <= as.Date("2020-06-01"))
names(Inc) <- c("date", "Inc")
Inc_aux <- data.frame(seq.Date(as.Date("1947-01-01"), as.Date("1958-12-01"), by = "month"))
Inc_aux$RPI <- NA
names(Inc_aux) <- c("date", "Inc")
Inc <- rbind(Inc_aux, Inc)
Emp$PAYEMS <- as.numeric(Emp$PAYEMS)
Emp <- Emp %>% mutate(rate = PAYEMS / lag(PAYEMS, 1) - 1)
Indpr$INDPRO <- as.numeric(Indpr$INDPRO)
Indpr <- Indpr %>% mutate(rate = INDPRO / lag(INDPRO, 1) - 1)
Inc$Inc <- as.numeric(Inc$Inc)
Inc <- Inc %>% mutate(rate = Inc / lag(Inc, 1) - 1)
GDP <- GDP %>% mutate(rate = GDPC1 / lag(GDPC1, 1) - 1)
GDP <- select(GDP, -c(GDPC1))
months <- lapply(X = GDP$date, FUN = seq.Date, by = "month", length.out = 3)
months <- data.frame(date = do.call(what = c, months))
m_GDP <- left_join(x = months, y = GDP, by = "date")
# Data frame for estimation
df <- cbind(m_GDP, Emp$rate, Indpr$rate, Inc$rate)
names(df) <- c("date", "S01_GDP", "S02_Emp", "S03_Indpr", "S04_Inc")
# 3) Model 1: one quarterly series and two monthly series
df_marss <- select(df, -c(S04_Inc))
df_marss <- df_marss %>% gather(key = "serie", value = "value", -date)
df_marss <- df_marss %>% spread(key = date, value = value)
df_marss$serie <- NULL
df_marss <- as.matrix(df_marss)
df_marss <- zscore(df_marss, mean.only = TRUE)
# Matrix Z
#
Z <- matrix(list(
"0.33*z1", "z2", "z3",
"0.67*z1", 0, 0,
"z1", 0, 0,
"0.67*z1", 0, 0,
"0.33*z1", 0, 0,
1 / 3, 0, 0,
2 / 3, 0, 0,
1, 0, 0,
2 / 3, 0, 0,
1 / 3, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 1,
0, 0, 0
), 3, 14)
m <- nrow(Z)
p <- ncol(Z)
# Matrix R
R <- matrix(list(0), m, m)
# Matrix B
B <- matrix(list(
"b1", 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"b2", 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b6", 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b7", 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b11", 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b12", 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b13", 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b14", 0
), 14, 14)
# Matrix Q
Q <- matrix(list(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "q6", 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q11", 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q13", 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), 14, 14)
Q[1, 1] <- "q1"
# Rest of matrices
x0 <- matrix(0, p, 1)
A <- matrix(0, (length(df) - 2), 1)
U <- matrix(0, p, 1)
V0 <- 5 * diag(1, p)
U <- matrix(0, p, 1)
# Estimation
# Define model
model.gen_1 <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 1)
# Estimation
kf_ss <- try(MARSS(df_marss, model = model.gen_1, method = "BFGS", silent = TRUE), silent = TRUE)
test_that("GDF example 3 for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF example 3 for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF example 3 for numerical stabilty", {
expect_true(all.equal(kf_ss$logLik, 7380.469127))
})
# 4) Model 2: one quarterly series and three monthly series
df_marss <- df %>% gather(key = "serie", value = "value", -date)
df_marss <- df_marss %>% spread(key = date, value = value)
df_marss$serie <- NULL
df_marss <- as.matrix(df_marss)
df_marss <- zscore(df_marss, mean.only = TRUE)
# Matrix Z
#
Z <- matrix(list(
"0.33*z1", "z2", "z3", "z4",
"0.67*z1", 0, 0, 0,
"z1", 0, 0, 0,
"0.67*z1", 0, 0, 0,
"0.33*z1", 0, 0, 0,
1 / 3, 0, 0, 0,
2 / 3, 0, 0, 0,
1, 0, 0, 0,
2 / 3, 0, 0, 0,
1 / 3, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0,
0, 0, 0, 1,
0, 0, 0, 0
), 4, 16)
m <- nrow(Z)
p <- ncol(Z)
# Matrix R
R <- matrix(list(0), m, m)
# Matrix B
B <- matrix(list(
"b1", 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"b2", 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b6", 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b7", 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b11", 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b12", 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b13", 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b14", 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b15", 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b16", 0
), 16, 16)
# Matrix Q
Q <- matrix(list(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "q6", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q11", 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q13", 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q15", 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), 16, 16)
Q[1, 1] <- "q1"
# Rest of matrices
x0 <- matrix(0, p, 1)
A <- matrix(0, (length(df) - 1), 1)
U <- matrix(0, p, 1)
V0 <- 5 * diag(1, p)
U <- matrix(0, p, 1)
# Estimation
# Define model
model.gen_2 <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 1)
# Estimation
kf_ss <- try(MARSS(df_marss, model = model.gen_2, method = "BFGS", silent = TRUE), silent = TRUE)
test_that("GDF example 4 for numerical stabilty", {
expect_true(!inherits(kf_ss, "try-error"))
})
test_that("GDF example 4 for numerical stabilty", {
expect_true(kf_ss$convergence == 0)
})
test_that("GDF example 4 for numerical stabilty", {
expect_true(all.equal(kf_ss$logLik, 10014.90035))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.