R/MOVER_R_Wilson_CI_OR_2x2.R

Defines functions MOVER_R_Wilson_CI_OR_2x2

Documented in MOVER_R_Wilson_CI_OR_2x2

#' @title The MOVER-R Wilson confidence interval for the odds ratio
#' @description The MOVER-R Wilson confidence interval for the odds ratio
#' @description Described in Chapter 4 "The 2x2 Table"
#' @param n the observed counts (a 2x2 matrix)
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @examples
#' # A case-control study of GADA exposure on IPEX syndrome (Lampasona et al., 2013):
#' MOVER_R_Wilson_CI_OR_2x2(lampasona_2013)
#'
#' # The association between CHRNA4 genotype and XFS (Ritland et al., 2007):
#' MOVER_R_Wilson_CI_OR_2x2(ritland_2007)
#'
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
MOVER_R_Wilson_CI_OR_2x2 <- function(n, alpha = 0.05) {
  validateArguments(mget(ls()))

  # If n_22 = 0, use an equivalent case, which gives a finite upper limit
  if (n[2, 2] == 0) {
    n <- matrix(c(0, n[2, 1], n[1, 2], n[1, 1]), nrow = 2, byrow = TRUE)
  }

  n1p <- n[1, 1] + n[1, 2]
  n2p <- n[2, 1] + n[2, 2]

  # Estimates of the two probabilities of success
  pi1hat <- n[1, 1] / n1p
  pi2hat <- n[2, 1] / n2p

  # Estimate of the odds ratio (thetahat)
  estimate <- n[1, 1] * n[2, 2] / (n[1, 2] * n[2, 1])

  # Use Wilson score CIs for the two probabilities of success
  res1 <- Wilson_score_CI_1x2(n[1, 1], n1p, alpha)
  res2 <- Wilson_score_CI_1x2(n[2, 1], n2p, alpha)

  # The estimated logits of pi_1 and pi_2 and their CIs
  q1hat <- pi1hat / (1 - pi1hat)
  q2hat <- pi2hat / (1 - pi2hat)

  # Calculate the confidence limits
  L <- (q1hat * q2hat - sqrt((q1hat * q2hat)^2 -
    res1[["lower"]] * res2[["upper"]] * (2 * q1hat - res1[["lower"]]) * (2 * q2hat - res2[["upper"]]))) /
    (res2[["upper"]] * (2 * q2hat - res2[["upper"]]))
  U <- (q1hat * q2hat + sqrt((q1hat * q2hat)^2 -
    res1[["upper"]] * res2[["lower"]] * (2 * q1hat - res1[["upper"]]) * (2 * q2hat - res2[["lower"]]))) /
    (res2[["lower"]] * (2 * q2hat - res2[["lower"]]))

  # In case of n_12 = 0, let L = 1 / U_tmp, where U_tmp comes from the CI for 0 / n1+ vs n22 / n2+
  if (n[1, 2] == 0) {
    U_tmp <- MOVER_R_Wilson_CI_OR_2x2(matrix(c(0, n1p, n[2, 2], n[2, 1]), nrow = 2, byrow = TRUE), alpha)$upper
    L <- 1 / U_tmp
  }

  # Fix limits for some special cases
  # if isnan(L) || isreal(L) == 0,
  if (is.na(L)) {
    L <- 0
  }
  # if isnan(U) || isreal(U) == 0 || U < 0,
  if (is.na(U) || U < 0) {
    U <- Inf
  }
  L <- max(c(0, L))

  return(
    contingencytables_result(
      list("lower" = L, "upper" = U, "estimate" = estimate),
      sprintf(
        "The MOVER-R Wilson CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
        estimate, 100 * (1 - alpha), L, U
      )
    )
  )
}
ocbe-uio/contingencytables documentation built on Aug. 30, 2024, 7:16 a.m.