#' @title The Peto test for homogeneity of odds ratios over strata
#' @description The Peto test for homogeneity of odds ratios over strata
#' @description Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"
#' @param n the observed table (a 2x2xk matrix, where k is the number of strata)
#' @examples
#' # Smoking and lung cancer (Doll and Hill, 1950)
#' Peto_homogeneity_test_stratified_2x2(doll_hill_1950)
#'
#' # Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
#' Peto_homogeneity_test_stratified_2x2(hine_1989)
#'
#' @export
Peto_homogeneity_test_stratified_2x2 <- function(n) {
validateArguments(mget(ls()))
n1pk <- apply(n[1, , ], 2, sum)
np1k <- apply(n[, 1, ], 2, sum)
n2pk <- apply(n[2, , ], 2, sum)
np2k <- apply(n[, 2, ], 2, sum)
nppk <- apply(n, 3, sum)
K <- dim(n)[3]
# The conditional expectation (from the hypergeomtric distribution)
expectation <- n1pk * np1k / nppk
# The variance (from the hypergeomtric distribution)
variance <- n1pk * n2pk * np1k * np2k / ((nppk^2) * (nppk - 1))
# The Peto odds ratio estimate in each stratum (on the log scale)
log_theta_k <- (n[1, 1, ] - expectation) / variance
# The overall Peto odds ratio estimate (on the log scale)
log_estimate <- sum(n[1, 1, ] - expectation) / sum(variance)
# The Peto test statistic
T0 <- sum(variance * (log_theta_k - log_estimate)^2)
# The two-sided P-value (reference distribution: chi-squared with K - 1
# degrees of freedom)
df <- K - 1
P <- 1 - pchisq(T0, df)
return(
contingencytables_result(
list("Pvalue" = P, "T" = T0, "df" = df),
sprintf("The Peto test: P = %7.5f, T0 = %5.3f (df = %i)", P, T0, df)
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.