# Definitions of several variables ----
popstruc <- population_rv$data %>%
select(age_category, pop) %>%
rename(agefloor = age_category) %>%
as.data.frame()
popbirth <- population_rv$data %>%
select(age_category, birth) %>%
as.data.frame() # unit should be per person per day
mort <- population_rv$data %>%
pull(death) # unit should be per person per day
ihr <- mort_sever_rv$data %>%
select(age_category, ihr) %>%
as.data.frame()
ifr <- mort_sever_rv$data %>%
select(age_category, ifr) %>%
as.data.frame()
# Complete contact Matrices ----
c_home <- contact_home[[input$country_contact]] %>% as.matrix()
c_school <- contact_school[[input$country_contact]] %>% as.matrix()
c_work <- contact_work[[input$country_contact]] %>% as.matrix()
c_other <- contact_other[[input$country_contact]] %>% as.matrix()
nce <- A - length(c_home[1, ])
contact_home <- matrix(0, nrow = A, ncol = A)
contact_school <- matrix(0, nrow = A, ncol = A)
contact_work <- matrix(0, nrow = A, ncol = A)
contact_other <- matrix(0, nrow = A, ncol = A)
for (i in 1:(A - nce)) {
for (j in 1:(A - nce)) {
contact_home[i, j] <- c_home[i, j]
contact_school[i, j] <- c_school[i, j]
contact_work[i, j] <- c_work[i, j]
contact_other[i, j] <- c_other[i, j]
}
}
for (i in (A + 1 - nce):A) {
for (j in 1:(A - nce)) {
contact_home[i, j] <- c_home[(A - nce), j]
contact_school[i, j] <- c_school[(A - nce), j]
contact_work[i, j] <- c_work[(A - nce), j]
contact_other[i, j] <- c_other[(A - nce), j]
}
}
for (i in 1:(A - nce)) {
for (j in (A + 1 - nce):A) {
contact_home[i, j] <- c_home[i, (A - nce)]
contact_school[i, j] <- c_school[i, (A - nce)]
contact_work[i, j] <- c_work[i, (A - nce)]
contact_other[i, j] <- c_other[i, (A - nce)]
}
}
for (i in (A + 1 - nce):A) {
for (j in (A + 1 - nce):A) {
contact_home[i, j] <- c_home[(A - nce), (A - nce)]
contact_school[i, j] <- c_school[(A - nce), (A - nce)]
contact_work[i, j] <- c_work[(A - nce), (A - nce)]
contact_other[i, j] <- c_other[(A - nce), (A - nce)]
}
}
# Define time variables ----
startdate <- input$date_range[1]
stopdate <- input$date_range[2]
times <- seq(0, as.numeric(stopdate - startdate))
# Define parameters vector ----
parameters <- reactiveValuesToList(input)[
c("p", "rho", "omega", "gamma", "nui", "report", "reportc", "reporth",
"beds_available", "icu_beds_available", "ventilators_available",
"pdeath_h", "pdeath_hc", "pdeath_icu", "pdeath_icuc",
"pdeath_vent", "pdeath_ventc", "ihr_scaling", "nus",
"nu_icu", "nu_vent", "rhos", "amp",
"pclin", "prob_icu", "prob_vent", "selfis_eff", "dist_eff", "hand_eff",
"work_eff", "w2h", "s2h", "cocoon_eff", "age_cocoon",
"vaccine_eff", "vac_campaign", "mean_imports", "screen_test_sens",
"screen_overdispersion", "quarantine_days", "quarantine_effort",
"quarantine_eff_home", "quarantine_eff_other", "household_size",
"noise", "iterations", "confidence",
# additions in v14.14:
"mass_test_sens", "isolation_days",
# additions in v15.1:
"pdeath_ho", "pdeath_hco", "pdeath_icuo", "pdeath_icuco",
"propo2", "dexo2", "dexo2c", "dexv", "dexvc", "vent_dex",
"mask_eff",
# additions in v16.2:
"prob_icu_v", "prob_icu_vr", "prob_icu_r", "prob_v_v", "prob_v_vr", "prob_v_r",
"pclin_v", "pclin_vr", "pclin_r", "sigmaEV", "sigmaEVR", "sigmaER", "sigmaR", "vac_dur",
"vac_dur_r", "report_natdeathI", "report_natdeathCL", "report_v",
"report_cv", "report_vr", "report_cvr", "report_r", "report_cr", "reporth_ICU",
"report_death_HC", "pdeath_vent_hc", "pdeath_icu_hc", "pdeath_icu_hco",
"reporth_g", "seroneg",
"vaccine_eff_r", "pre",
# addition in v17:
"init", "sample_size", "se", "sp"
)] %>%
unlist()
parameters <- c(
parameters,
give = 95,
nusc = input$nus,
nu_icuc = input$nu_icu,
nu_ventc = input$nu_vent,
phi = which(month.name == input$phi))
ihr[,2]<- parameters["ihr_scaling"]*ihr[,2]
# Scale parameters to percentages/ rates
parameters["rho"]<-parameters["rho"]/100
parameters["omega"]<-(1/(parameters["omega"]*365))
parameters["gamma"]<-1/parameters["gamma"]
parameters["nui"]<-1/parameters["nui"]
parameters["report"]<-parameters["report"]/100
parameters["reportc"]<-parameters["reportc"]/100
parameters["report_v"]<-parameters["report_v"]/100
parameters["report_cv"]<-parameters["report_cv"]/100
parameters["report_vr"]<-parameters["report_vr"]/100
parameters["report_cvr"]<-parameters["report_cvr"]/100
parameters["report_r"]<-parameters["report_r"]/100
parameters["report_cr"]<-parameters["report_cr"]/100
parameters["reporth"]<-parameters["reporth"]/100
parameters["nus"]<-1/parameters["nus"]
parameters["rhos"]<-parameters["rhos"]/100
parameters["amp"]<-parameters["amp"]/100
parameters["selfis_eff"]<-parameters["selfis_eff"]/100
parameters["dist_eff"]<-parameters["dist_eff"]/100
parameters["hand_eff"]<-parameters["hand_eff"]/100
parameters["mask_eff"]<-parameters["mask_eff"]/100
parameters["work_eff"]<-parameters["work_eff"]/100
parameters["w2h"]<-parameters["w2h"]/100
parameters["s2h"]<-parameters["s2h"]/100
parameters["cocoon_eff"]<-parameters["cocoon_eff"]/100
parameters["age_cocoon"]<-floor((parameters["age_cocoon"]/5)+1)
parameters["vaccine_eff"]<-parameters["vaccine_eff"]/100
parameters["vaccine_eff_r"]<-parameters["vaccine_eff_r"]/100
age_vaccine_min<-(parameters["age_vaccine_min"])
age_vaccine_max<-(parameters["age_vaccine_max"])
# parameters["vaccine_cov"]<-parameters["vaccine_cov"]/100
# parameters["vac_campaign"]<-parameters["vac_campaign"]*7
parameters["screen_test_sens"]<-parameters["screen_test_sens"]/100
parameters["quarantine_days"]<-parameters["quarantine_days"]
parameters["quarantine_effort"]<-1/parameters["quarantine_effort"]
parameters["quarantine_eff_home"]<-parameters["quarantine_eff_home"]/-100
parameters["quarantine_eff_other"]<-parameters["quarantine_eff_other"]/100
parameters["give"]<-parameters["give"]/100
parameters["pdeath_h"]<-parameters["pdeath_h"]/100
parameters["pdeath_ho"]<-parameters["pdeath_ho"]/100
parameters["pdeath_hc"]<-parameters["pdeath_hc"]/100
parameters["pdeath_hco"]<-parameters["pdeath_hco"]/100
parameters["pdeath_icu"]<-parameters["pdeath_icu"]/100
parameters["pdeath_icuo"]<-parameters["pdeath_icuo"]/100
parameters["pdeath_icuc"]<-parameters["pdeath_icuc"]/100
parameters["pdeath_icuco"]<-parameters["pdeath_icuco"]/100
parameters["pdeath_vent"]<-parameters["pdeath_vent"]/100
parameters["pdeath_ventc"]<-parameters["pdeath_ventc"]/100
parameters["nusc"]<-1/parameters["nusc"]
parameters["nu_icu"]<-1/parameters["nu_icu"]
parameters["nu_icuc"]<-1/parameters["nu_icuc"]
parameters["nu_vent"]<-1/parameters["nu_vent"]
parameters["nu_ventc"]<-1/parameters["nu_ventc"]
parameters["pclin"]<-parameters["pclin"]/100
parameters["prob_icu"]<-parameters["prob_icu"]/100
parameters["prob_vent"]<-parameters["prob_vent"]/100
# iterations<-parameters["iterations"]
# noise<-parameters["noise"]
# confidence<-parameters["confidence"]/100
parameters["mass_test_sens"]<-parameters["mass_test_sens"]/100
# age_testing_min<-(parameters["age_testing_min"])
# age_testing_max<-(parameters["age_testing_max"])
parameters["isolation_days"]<-parameters["isolation_days"]
parameters["propo2"]<-parameters["propo2"]/100
parameters["dexo2"]<-parameters["dexo2"]/100
parameters["dexo2c"]<-parameters["dexo2c"]/100
parameters["dexv"]<-parameters["dexv"]/100
parameters["dexvc"]<-parameters["dexvc"]/100
parameters["vent_dex"]<-parameters["vent_dex"]/100
parameters["prob_icu_v"]<-parameters["prob_icu_v"]/100
parameters["prob_icu_vr"]<-parameters["prob_icu_vr"]/100
parameters["prob_icu_r"]<-parameters["prob_icu_r"]/100
parameters["prob_v_v"]<-parameters["prob_v_v"]/100
parameters["prob_v_r"]<-parameters["prob_v_r"]/100
parameters["prob_v_vr"]<-parameters["prob_v_vr"]/100
parameters["pclin_v"]<-parameters["pclin_v"]/100
parameters["pclin_vr"]<-parameters["pclin_vr"]/100
parameters["pclin_r"]<-parameters["pclin_r"]/100
parameters["sigmaEV"]<-parameters["sigmaEV"]/100
parameters["sigmaER"]<-parameters["sigmaER"]/100
parameters["sigmaEVR"]<-parameters["sigmaEVR"]/100
parameters["sigmaR"]<-parameters["sigmaR"]/100
parameters["vac_dur"]<-1/parameters["vac_dur"]/100
parameters["vac_dur_r"]<-1/parameters["vac_dur_r"]/100
parameters["report_natdeathI"]<-parameters["report_natdeathI"]/100
parameters["report_natdeathCL"]<-parameters["report_natdeathCL"]/100
parameters["report_death_HC"]<-parameters["report_death_HC"]/100
parameters["reporth_ICU"]<-parameters["reporth_ICU"]/100
parameters["pre"]<-parameters["pre"]/100
parameters["pdeath_vent_hc"]<-parameters["pdeath_vent_hc"]/100
parameters["pdeath_icu_hc"]<-parameters["pdeath_icu_hc"]/100
parameters["pdeath_icu_hco"]<-parameters["pdeath_icu_hco"]/100
parameters["reporth_g"]<-parameters["reporth_g"]/100
parameters["seroneg"]<-(1/parameters["seroneg"])
# initial conditions for the main solution vector ----
initI<-0*popstruc[,2] # Infected and symptomatic
initE<-0*popstruc[,2] # Incubating
# initE[aci]<-1 # place random index case in E compartment
initE[aci]<-parameters["init"] # place random index case in E compartment
initR<-parameters["pre"]*popstruc[,2] # Immune
initX<-0*popstruc[,2] # Isolated
initV<-0*popstruc[,2] # Vaccinated
initQS<-0*popstruc[,2] # quarantined S
initQE<-0*popstruc[,2] # quarantined E
initQI<-0*popstruc[,2] # quarantined I
initQR<-0*popstruc[,2] # quarantined R
initH<-0*popstruc[,2] # hospitalised
initHC<-0*popstruc[,2] # hospital critical
initC<-0*popstruc[,2] # Cumulative cases (true)
initCM<-0*popstruc[,2] # Cumulative deaths (true)
initCL<-0*popstruc[,2] # symptomatic cases
initQC<-0*popstruc[,2] # quarantined C
initICU<-0*popstruc[,2] # icu
initICUC<-0*popstruc[,2] # icu critical
initICUCV<-0*popstruc[,2] # icu critical
initVent<-0*popstruc[,2] # icu vent
initVentC<-0*popstruc[,2] # icu vent crit
initCMC<-0*popstruc[,2] # Cumulative deaths - overload (true)
initZ<-0*popstruc[,2] # testing - quarantined (true)
initEV<-0*popstruc[,2] # vaccinated exposed
initER<-0*popstruc[,2] # recovered exposed
initEVR<-0*popstruc[,2] # recovered and vaccinated exposed
initVR<-0*popstruc[,2] # recovered and vaccinated
initQV<-0*popstruc[,2] # quarantined and vaccinated
initQEV<-0*popstruc[,2] # quarantined, exposed and vaccinated
initQEVR<-0*popstruc[,2] # quarantined, exposed, recovered and vaccinated
initQER<-0*popstruc[,2] # quarantined, exposed and recovered
initQVR<-0*popstruc[,2] # quarantined, recovered and vaccinated
initHCICU<-0*popstruc[,2] # icu not seeking
initHCV<-0*popstruc[,2] # ventilator not seeking
initAb<-0*popstruc[,2] # ventilator not seeking
initS<-popstruc[,2]-initE-initI-initCL-initR-initX-initZ-initV-initH-initHC-initICU-initICUC-initICUCV-initVent-initVentC-
initQS-initQE-initQI-initQR-initQC-initEV-initER-initEVR-initVR-initQV-initQEV-initQEVR-initQER-initQVR-
initHCICU-initHCV # Susceptible (non-immune)
# Define dataframe of interventions ----
inp <- bind_rows(interventions$baseline_mat %>% mutate(`Apply to` = "Baseline (Calibration)"),
interventions$future_mat %>% mutate(`Apply to` = "Hypothetical Scenario")) %>%
rename(apply_to = `Apply to`)
Y<-c(initS,initE,initI,initR,initX,initH,initHC,initC,initCM,initV, initQS, initQE, initQI, initQR, initCL, initQC, initICU,
initICUC, initICUCV, initVent, initVentC, initCMC,initZ, initEV, initER, initEVR, initVR,
initQV,initQEV,initQEVR,initQER,initQVR,initHCICU,initHCV,initAb) # initial conditions for the main solution vector
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.