# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of Covid19DrugRepurposing
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
createCharacterization <- function(connectionDetails,
cdmDatabaseSchema,
cohortDatabaseSchema = cdmDatabaseSchema,
cohortTable,
oracleTempSchema = cohortDatabaseSchema,
outputFolder,
exposureIds = NULL) {
covariatesFolder <- file.path(outputFolder, "covariates")
if (!file.exists(covariatesFolder)) {
dir.create(covariatesFolder, recursive = TRUE)
}
pathToCsv <- system.file("settings", "TosOfInterest.csv", package = "Covid19DrugRepurposing")
tosOfInterest <- read.csv(pathToCsv, stringsAsFactors = FALSE)
if (!is.null(exposureIds)) {
ParallelLogger::logInfo("Limiting to exposure ID(s) ", paste(exposureIds, sep = ", "))
tosOfInterest <- tosOfInterest[tosOfInterest$exposureId %in% exposureIds, ]
}
# Determine washout period based on first analysis:
sccsAnalysisListFile <- system.file("settings", "sccsAnalysisList.json", package = "Covid19DrugRepurposing")
sccsAnalysisList <- SelfControlledCaseSeries::loadSccsAnalysisList(sccsAnalysisListFile)
washoutDays <- sccsAnalysisList[[1]]$createSccsEraDataArgs$naivePeriod
covariateSettings <- FeatureExtraction::createDefaultCovariateSettings()
connection <- DatabaseConnector::connect(connectionDetails)
on.exit(DatabaseConnector::disconnect(connection))
for (i in 1:nrow(tosOfInterest)) {
eoCovariatesFolder <- file.path(covariatesFolder, sprintf("covariates_e%s_o%s", tosOfInterest$exposureId[i], tosOfInterest$outcomeId[i]))
if (!file.exists(eoCovariatesFolder)) {
ParallelLogger::logInfo(sprintf("Creating characteristics for exposure %s and outcome %s", tosOfInterest$exposureId[i], tosOfInterest$outcomeId[i]))
# Create at-risk cohorts
ParallelLogger::logInfo("Creating cohort to characterize")
sql <- SqlRender::loadRenderTranslateSql(sqlFilename = "CreateAtRiskCohorts.sql",
packageName = "Covid19DrugRepurposing",
dbms = connectionDetails$dbms,
oracleTempSchema = oracleTempSchema,
cdm_database_schema = cdmDatabaseSchema,
cohort_database_schema = cohortDatabaseSchema,
cohort_table = cohortTable,
exposure_id = tosOfInterest$exposureId[i],
outcome_id = tosOfInterest$outcomeId[i],
washout_days = washoutDays)
DatabaseConnector::executeSql(connection, sql)
# Extract features per cohort:
covariateData <- FeatureExtraction::getDbCovariateData(connection = connection,
oracleTempSchema = oracleTempSchema,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = "#at_risk_cohort",
cohortTableIsTemp = TRUE,
covariateSettings = covariateSettings,
aggregated = TRUE)
FeatureExtraction::saveCovariateData(covariateData, eoCovariatesFolder)
}
}
sql <- "TRUNCATE TABLE #at_risk_cohort; DROP TABLE #at_risk_cohort;"
DatabaseConnector::renderTranslateExecuteSql(connection, sql, oracleTempSchema = oracleTempSchema, progressBar = FALSE, reportOverallTime = FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.