Ta: Function to generate a prediction expression for the Ta...

Description Usage Arguments Value References See Also Examples

View source: R/Ta.R

Description

Ta generates a prediction expression for the Ta method. In general_T, the data are normalized by subtracting the mean and without scaling based on sample_data. The sample data are not divided into 2 datasets. All the sample data are used for both unit space and signal space.

Usage

1
Ta(sample_data, subtracts_V_e = TRUE, includes_transformed_data = FALSE)

Arguments

sample_data

Matrix with n rows (samples) and (p + 1) columns (variables). The 1 ~ p th columns are independent variables and the (p + 1) th column is a dependent variable. All data should be continuous values and should not have missing values.

subtracts_V_e

If TRUE, then the error variance is subtracted in the numerator when calculating eta_hat.

includes_transformed_data

If TRUE, then the transformed data are included in a return object.

Value

A list containing the following components is returned.

beta_hat

Vector with length q. Estimated proportionality constants between each independent variable and the dependent variable.

subtracts_V_e

Logical. If TRUE, then eta_hat was calculated without subtracting the error variance in the numerator.

eta_hat

Vector with length q. Estimated squared signal-to-noise ratios (S/N) coresponding to beta_hat.

M_hat

Vector with length n. The estimated values of the dependent variable after the data transformation for sample_data.

overall_prediction_eta

Numeric. The overall squared signal-to-noise ratio (S/N).

transforms_independent_data

Data transformation function generated from generates_transform_functions based on the unit_space_data. The function for independent variables takes independent variable data (a matrix of p columns) as an (only) argument and returns the transformed independent variable data.

transforms_dependent_data

Data transformation function generated from generates_transform_functions based on the unit_space_data. The function for a dependent variable takes dependent variable data (a vector) as an (only) argument and returns the transformed dependent variable data.

inverses_dependent_data

Data transformation function generated from generates_transform_functions based on the unit_space_data. The function of the takes the transformed dependent variable data (a vector) as an (only) argument and returns the dependent variable data inversed from the transformed dependent variable data.

m

The number of samples for sample_data.

q

The number of independent variables after the data transformation. q equals p.

X

If includes_transformed_data is TRUE, then the independent variable data after the data transformation for the sample_data are included.

M

If includes_transformed_data is TRUE, then the (true) value of the dependent variable after the data transformation for the sample_data are included.

References

Inou, A., Nagata, Y., Horita, K., & Mori, A. (2012). Prediciton Accuracies of Improved Taguchi's T Methods Compared to those of Multiple Regresssion Analysis. Journal of the Japanese Society for Quality Control, 42(2), 103-115. (In Japanese)

Kawada, H., & Nagata, Y. (2015). An application of a generalized inverse regression estimator to Taguchi's T-Method. Total Quality Science, 1(1), 12-21.

See Also

general_T, generates_transformation_functions_T1, and forecasting.Ta

Examples

1
2
3
4
5
model_Ta <- Ta(sample_data = stackloss[-c(2, 12, 19), ],
               subtracts_V_e = TRUE,
               includes_transformed_data = TRUE)

(model_Ta$M_hat)

okayaa/MT documentation built on March 15, 2021, 8:41 a.m.