calc_M_hat: Function to estimate M value (M hat) for a family of T...

Description Usage Arguments Value See Also Examples

View source: R/general_T.R

Description

calc_M_hat estimates M values (M hat) for the T method.

Usage

1
calc_M_hat(X, beta_hat, eta_hat)

Arguments

X

Matrix with n rows (samples) and q columns (variables). The independent variable data after the data transformation. All data should be continuous values and should not have missing values.

beta_hat

Vector with length q. Estimated proportionality constants between each independent variable and the dependent variable.

eta_hat

Vector with length q. Estimated squared signal-to-noise ratios (S/N) coresponding to beta_hat.

Value

Vector with length n. Estimated M values (M hat).

See Also

general_T and general_forecasting.T

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
# The value of the dependent variable of the following samples mediates
# in the stackloss dataset.
stackloss_center <- stackloss[c(9, 10, 11, 20, 21), ]

# The following samples are data other than the unit space data and the test
# data.
stackloss_signal <- stackloss[-c(2, 9, 10, 11, 12, 19, 20, 21), ]

# The following settings are same as the T1 method.
model <- general_T(unit_space_data = stackloss_center,
                   signal_space_data = stackloss_signal,
                   generates_transform_functions =
                                       generates_transformation_functions_T1,
                   includes_transformed_data = TRUE)

modified_eta_hat <- model$eta_hat
modified_eta_hat[3] <- 0

(modified_M_hat <- calc_M_hat(model$X, model$beta_hat, modified_eta_hat))

okayaa/MT documentation built on March 15, 2021, 8:41 a.m.