compute_mvd: Computing multiview distance

compute_mvdR Documentation

Computing multiview distance

Description

compute_mvd Compute multiview distance

Usage

compute_mvd(
  block_mvd,
  effect_var,
  E,
  tp = 1,
  lib = c(1, nrow(block_mvd)),
  pred = lib,
  make_block_method = "naive",
  make_block_max_lag = E,
  n_ssr = 10000,
  k = floor(sqrt(n_ssr)),
  random_seed = 1234,
  distance_only = TRUE,
  silent = FALSE
)

Arguments

block_mvd

Data.frame contains time series data. The first column should be the target column.

effect_var

Character or Numeric. Column name or index of the effect variable.

E

Numeric. Optimal embedding dimension of effect_var

tp

Numeric. Forecasting time ahead.

lib

Numeric vector. Library indices.

pred

Numeric vector. Prediction indices.

make_block_method

Character. If naive, the multivariate data.frame (block_mvd) is directly used to calculate the multiview distance. If rEDM, rEDM::make_block() is used to add the time-delayed ordinate for each variable, which make the method equivalent to Chang et al. (2021).

make_block_max_lag

Numeric. max_lag in rEDM::make_block(). This argument will be used only if make_block_method = "rEDM".

n_ssr

Numeric. The total number of embeddings examined.

k

Numeric. The number of embeddings used to calculate ensemble distance.

random_seed

Numeric. Random seed.

distance_only

Logical. if TRUE, only distance matrix is returned.

silent

Logical. if TRUE, progress message will not be shown.

Details

  • Chang et al. (2021) Ecology Letters. https://doi.org/10.1111/ele.13897

Value

A distance matrix and other information (if distance_only = FALSE).


ong8181/macam documentation built on Oct. 15, 2024, 7:04 a.m.