# Generate a bunch of datasets of aggregate predictions, for a
# selection of different cw values
# the values of cw will go from 1/cwx to max(loopval)/cwx in increments
# of 1/cwx. Change the max in the for-loop and the cwx to change stuff
library(devtools)
load_all()
##################################
### USER INPUT ###
##################################
# Select one of the following
dfx <- atomdat_3 # for FEDFUNDS
outc <- "fed"
dfx <- atomdat_2 # for GDPTCPI
outc <- "tcpi"
dfx <- atomdat_1 # for GDP
outc <- "gdp"
###################################
###################################
###################################
load("data-raw/pooling_vars.Rdata")
aggdata_list <- list()
for (i in 1:400) {
print(i) # ghetto-timer
cwx <- i/10
aggpred_data <- gen_agg_preds(
dfx,
start_agg = 173,
sotw = data.frame(pooling_vars[, c (1:4, 9)]),
baseline = TRUE,
caliper = TRUE,
mahala = FALSE,
cw = cwx,
mvc = 1
)
cw <- rep(i, nrow(aggpred_data))
df <- cbind(aggpred_data, cw)
aggdata_list[[i]] <- df
}
df_all <- do.call(rbind, aggdata_list)
df_all <- data.table(df_all)
filtit <- sprintf("data-raw/data_allcw_%s.rds", outc)
saveRDS(df_all, file = filtit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.