# car loading ----
test_that("car emits a message about mmrm registration on load", {
# Don't use skip_if_not_installed yet since it runs requireNamespace, which
# will itself load the package without testing startup.
skip_if(length(find.package("car")) < 1)
# Detach car in case it was loaded in session or previous test run
if (isNamespaceLoaded("car")) {
unloadNamespace("car")
}
expect_message(library(car), "mmrm")
})
# h_first_contain_categorical ----
test_that("h_first_contain_categorical works as expected", {
effect <- "FEV1_BL:AVISIT"
factors <- matrix(c(2, 2), nrow = 2L, dimnames = list(c("FEV1_BL", "AVISIT"), c("FEV1_BL:AVISIT")))
categorical <- c("AVISIT")
expect_true(h_first_contain_categorical(effect, factors, categorical))
factors2 <- matrix(
c(1, 0, 0, 0, 2, 2),
nrow = 3L,
dimnames = list(c("AGE", "FEV1_BL", "AVISIT"), c("AGE", "FEV1_BL:AVISIT"))
)
expect_true(h_first_contain_categorical(effect, factors2, categorical))
categorical2 <- c("NONE")
expect_false(h_first_contain_categorical(effect, factors, categorical2))
categorical3 <- c("AGE")
expect_false(h_first_contain_categorical(effect, factors, categorical3))
})
# h_obtain_lvls ----
test_that("h_obtain_lvls works as expected", {
expect_identical(
h_obtain_lvls("a", c("b", "c"), list(a = letters[1:2], b = letters[1:3], c = letters[1:5])),
list(
prior = setNames(integer(0), character(0)),
post = c(b = 3L, c = 5L),
total = 15
)
)
expect_identical(
h_obtain_lvls("a", c("b", "c"), list(b = letters[1:3], c = letters[1:5])),
list(
prior = c(b = 3L, c = 5L),
post = 2L,
total = 15
)
)
})
# h_get_index ----
test_that("h_get_index works as expected", {
expect_identical(
expect_silent(h_get_index(list(c(1, 2), c(3, 4)), list(c(1), c(3, 4)))),
c(1L, 2L)
)
expect_identical(
expect_silent(h_get_index(list(c(1, 2), c(1, 4)), list(c(1), c(1, 4)))),
c(1L, NA)
)
})
# h_get_contrast ----
test_that("h_get_contrast works as expected", {
expect_identical(
h_get_contrast(get_mmrm_trans(), "log(FEV1_BL)", "3"),
matrix(c(0, 1, rep(0, 7)), nrow = 1, byrow = TRUE)
)
expect_identical(
h_get_contrast(get_mmrm_trans(), "ARMCD", "3"),
matrix(c(0, 0, 1, rep(0, 3), rep(0.25, 3)), nrow = 1, byrow = TRUE)
)
expect_identical(
h_get_contrast(get_mmrm_trans(), "ARMCD:AVISIT", "3"),
matrix(rep(rep(c(0, 1), 3), c(6, 1, 9, 1, 9, 1)), nrow = 3, byrow = TRUE)
)
expect_identical(
h_get_contrast(get_mmrm_trans(), "ARMCD:AVISIT", "3"),
matrix(rep(rep(c(0, 1), 3), c(6, 1, 9, 1, 9, 1)), nrow = 3, byrow = TRUE)
)
})
test_that("h_get_contrast works even if the interaction term order changes", {
mod1 <- mmrm(
formula = FEV1 ~ RACE + AVISIT + RACE * AVISIT + FEV1_BL + us(AVISIT | USUBJID),
data = fev_data
)
ctr <- expect_silent(h_get_contrast(mod1, "AVISIT", "3"))
colnames(ctr) <- names(coef(mod1))
for (i in seq_len(nrow(ctr))) {
expect_identical(
names(ctr[i, ctr[i, ] != 0]),
sprintf(c("AVISITVIS%s", "RACEBlack or African American:AVISITVIS%s", "RACEWhite:AVISITVIS%s"), i + 1)
)
}
mod2 <- mmrm(
formula = FEV1 ~ AVISIT + RACE + AVISIT * RACE + FEV1_BL + us(AVISIT | USUBJID),
data = fev_data
)
ctr <- expect_silent(h_get_contrast(mod2, "AVISIT", "3"))
colnames(ctr) <- names(coef(mod2))
for (i in seq_len(nrow(ctr))) {
expect_identical(
names(ctr[i, ctr[i, ] != 0]),
sprintf(c("AVISITVIS%s", "AVISITVIS%s:RACEBlack or African American", "AVISITVIS%s:RACEWhite"), i + 1)
)
}
})
test_that("h_get_contrast works even if only interaction term exists", {
mod1 <- mmrm(
formula = FEV1 ~ FEV1_BL:AVISIT - 1 + ar1(AVISIT | USUBJID),
data = fev_data
)
ctr <- expect_silent(h_get_contrast(mod1, "FEV1_BL:AVISIT", "3"))
colnames(ctr) <- names(coef(mod1))
for (i in seq_len(nrow(ctr))) {
expect_identical(
names(ctr[i, ctr[i, ] != 0]),
sprintf(c("FEV1_BL:AVISITVIS%s"), c("1", i + 1))
)
}
mod2 <- mmrm(
formula = FEV1 ~ AVISIT + AVISIT:RACE + FEV1_BL + us(AVISIT | USUBJID),
data = fev_data
)
ctr2 <- expect_silent(h_get_contrast(mod2, "AVISIT", "3"))
colnames(ctr2) <- names(coef(mod2))
for (i in seq_len(nrow(ctr2))) {
expect_identical(
names(ctr2[i, ctr2[i, ] != 0]),
sprintf(
c(
"AVISITVIS%s", "AVISITVIS1:RACEBlack or African American", "AVISITVIS%s:RACEBlack or African American",
"AVISITVIS1:RACEWhite", "AVISITVIS%s:RACEWhite"
),
i + 1
)
)
}
mod3 <- mmrm(
formula = FEV1 ~ AVISIT + AVISIT:RACE + FEV1_BL - 1 + us(AVISIT | USUBJID),
data = fev_data
)
ctr3 <- expect_silent(h_get_contrast(mod3, "AVISIT", "3"))
colnames(ctr3) <- names(coef(mod3))
for (i in seq_len(nrow(ctr3))) {
expect_identical(
names(ctr3[i, ctr3[i, ] != 0]),
sprintf(
c(
"AVISITVIS1", "AVISITVIS%s", "AVISITVIS1:RACEBlack or African American",
"AVISITVIS%s:RACEBlack or African American",
"AVISITVIS1:RACEWhite", "AVISITVIS%s:RACEWhite"
),
as.character(i + 1)
)
)
}
})
test_that("h_get_contrast works if intercept is not given", {
fit <- mmrm(FEV1 ~ AVISIT * ARMCD - 1 + ar1(AVISIT | USUBJID), data = fev_data)
h_get_contrast(fit, "ARMCD", "2")
h_get_contrast(fit, "AVISIT", "2")
h_get_contrast(fit, "AVISIT:ARMCD", "2")
})
test_that("h_get_contrast works for higher-order interaction", {
mod <- mmrm(
formula = FEV1 ~ ARMCD + RACE + AVISIT + RACE * AVISIT * ARMCD + FEV1_BL + ar1(AVISIT | USUBJID),
data = fev_data
)
ctr <- expect_silent(h_get_contrast(mod, "ARMCD:AVISIT", "3"))
colnames(ctr) <- names(coef(mod))
for (i in seq_len(nrow(ctr))) {
expect_identical(
names(ctr[i, ctr[i, ] != 0]),
sprintf(
c(
"ARMCDTRT:AVISITVIS%s",
"ARMCDTRT:RACEBlack or African American:AVISITVIS%s",
"ARMCDTRT:RACEWhite:AVISITVIS%s"
),
as.character(i + 1)
)
)
}
ctr <- expect_silent(h_get_contrast(mod, "RACE:AVISIT", "3"))
colnames(ctr) <- names(coef(mod))
for (i in seq_len(nrow(ctr))) {
expect_identical(
names(ctr[i, ctr[i, ] != 0]),
sprintf(
c(
"RACE%s:AVISITVIS%s",
"ARMCDTRT:RACE%s:AVISITVIS%s"
),
c("Black or African American", "White")[(i - 1) %% 2 + 1],
as.character(ceiling(i / 2) + 1)
)
)
}
})
# Anova ----
test_that("Anova works as expected", {
skip_if_not_installed("car")
expect_snapshot_tolerance(
Anova(get_mmrm(), "3")
)
expect_snapshot_tolerance(
Anova(get_mmrm_weighted(), "3")
)
expect_snapshot_tolerance(
Anova(get_mmrm_rank_deficient(), "3")
)
expect_snapshot_tolerance(
Anova(get_mmrm_trans(), "3")
)
expect_snapshot_tolerance(
Anova(get_mmrm(), "2")
)
expect_snapshot_tolerance(
Anova(get_mmrm_weighted(), "2")
)
expect_snapshot_tolerance(
Anova(get_mmrm_rank_deficient(), "2")
)
expect_snapshot_tolerance(
Anova(get_mmrm_trans(), "2")
)
})
## Anova with character covariates
test_that("Anova works if covariate are character", {
skip_if_not_installed("car")
fev2 <- fev_data
fev2$ARMCD <- as.character(fev2$ARMCD)
fit <- mmrm(FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev2)
fit2 <- mmrm(FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev_data)
expect_identical(
Anova(fit, "III"),
Anova(fit2, "III")
)
expect_identical(
Anova(fit, "II"),
Anova(fit2, "II")
)
})
# Anova Integration Test ----
test_that("Anova give similar results to SAS", {
skip_if_not_installed("car")
fit <- mmrm(FEV1 ~ ARMCD * FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data)
df2 <- expect_silent(Anova(fit, "2"))
df3 <- expect_silent(Anova(fit, "3"))
# the SAS results from design/anova/test2_1.csv and design/anova/test3_1.csv
# they shared the same model
expect_equal(
df2$`Denom Df`,
c(199.582314485653, 196.41571750149, 198.163532037944),
tolerance = 1e-4
)
expect_equal(
df2$`F Statistic`,
c(0.03099660681111, 11.5301174147263, 0.7644368094469),
tolerance = 1e-4
)
expect_equal(
df3$`Denom Df`,
c(199.582314485653, 198.163532037936, 198.163532037944),
tolerance = 1e-4
)
expect_equal(
df3$`F Statistic`,
c(0.03099660681111, 11.0435094615508, 0.7644368094469),
tolerance = 1e-4
)
})
test_that("Anova give similar results to SAS", {
skip_if_not_installed("car")
fit <- mmrm(FEV1 ~ ARMCD * SEX + ARMCD * FEV1_BL - FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data)
df2 <- expect_silent(Anova(fit, "2"))
df3 <- expect_silent(Anova(fit, "3"))
# the SAS results from design/anova/test2_1.csv and design/anova/test3_1.csv
# they shared the same model
expect_equal(
df2$`Denom Df`,
c(196.700026021882, 186.404412481085, 186.11901853766, 194.942672335072),
tolerance = 1e-4
)
expect_equal(
df2$`F Statistic`,
c(0.03093826913613, 0.10489707559679, 0.46643535342468, 6.11482167585228),
tolerance = 1e-4
)
expect_equal(
df3$`Denom Df`,
c(197.423866403271, 186.119018537661, 186.11901853766, 194.942672335072),
tolerance = 1e-4
)
expect_equal(
df3$`F Statistic`,
c(0.04875135180324, 0.09277653315012, 0.46643535342468, 6.11482167585228),
tolerance = 1e-4
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.