View source: R/transformation.R
ov_cmat_estimate | R Documentation |
The camera matrix characterizes the mapping of a camera from 3D real-world coordinates to 2D coordinates in an image.
ov_cmat_estimate(X, x)
X |
matrix or data.frame: Nx3 matrix of 3D real-world coordinates |
x |
matrix or data.frame: Nx2 matrix of image coordinates |
A list with components coef
(fitted transformation coefficients) and rmse
(root mean squared error of the fitted transformation)
https://en.wikipedia.org/wiki/Camera_matrix. For general background see e.g. Ballard DH, Brown CM (1982) Computer Vision. Prentice-Hall, New Jersey
ov_cmat_apply()
## define real-world and corresponding image coordinates
xX <- dplyr::tribble(~image_x, ~image_y, ~court_x, ~court_y, ~z,
0.054, 0.023, 0.5, 0.5, 0, ## near left baseline
0.951, 0.025, 3.5, 0.5, 0, ## near right baseline
0.752, 0.519, 3.5, 6.5, 0, ## far right baseline
0.288, 0.519, 0.5, 6.5, 0, ## far left baseline
0.199, 0.644, 0.5, 3.5, 2.43, ## left net top
0.208, 0.349, 0.5, 3.5, 0.00, ## left net floor
0.825, 0.644, 3.5, 3.5, 2.43, ## right net top
0.821, 0.349, 3.5, 3.5, 0.00) ## right net floor
C <- ov_cmat_estimate(X = xX[, 3:5], x = xX[, 1:2])
## fitted image coordinates using C
ov_cmat_apply(C, X = xX[, 3:5])
## compare to actual image positions
xX[, 1:2]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.