Description Usage Arguments Details Value Examples
Density, distribution function, quantile function,
random generation and hazard function for the Almaki and Yuan's modified weibull distribution with
parameters alpha, beta, theta, gamma and lambda.
1 2 3 4 5 6 7 8 9 | dNMW(x, alpha, beta, theta, gamma, lambda, log = FALSE)
pNMW(q, alpha, beta, theta, gamma, lambda, lower.tail = TRUE, log.p = FALSE)
qNMW(p, alpha, beta, theta, gamma, lambda, lower.tail = TRUE, log.p = FALSE)
rNMW(n, alpha, beta, theta, gamma, lambda)
hNMW(x, alpha, beta, theta, gamma, lambda, log = FALSE)
|
x,q |
vector of quantiles. |
alpha |
parameter one. |
beta |
parameter two. |
theta |
parameter three. |
gamma |
parameter four. |
lambda |
parameter five. |
log,log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The Almaki and Yuans modified weibull with parameters alpha,
beta, theta, gamma and lambda has density given by
f(x)=(alpha*theta*x^(theta-1)+beta*(gamma+ lambda*x)*(x^(gamma-1)*exp(lambda*x)))*(exp((-alpha*x^theta)-(beta*x^gamma*exp(lambda*x)))
for x>0.
dNMW gives the density, pNMW gives the distribution
function, qNMW gives the quantile function, rNMW
generates random deviates and hNMW gives the hazard function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## The probability density function
curve(dNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.4, ylim = c(0, 3), col = "red", las = 1, ylab = "The probability density function")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.4, col = "red", las = 1, ylab = "The cumulative distribution function")
curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2, lower.tail = FALSE), from = 0, to = 1.4, col = "red", las = 1, ylab = "The Reliability function")
## The quantile function
p <- seq(from = 0, to = 0.998, length.out = 100)
plot(x=qNMW(p, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), y = p, xlab = "Quantile", las = 1, ylab = "Probability")
curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, add = TRUE, col = "red")
## The random function
hist(rNMW(n = 1000, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), freq = FALSE, ylim = c(0, 3), xlab = "x", las = 1, main = "")
curve(dNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, ylim = c(0, 3), add = T, col = "red")
## The Hazard function
curve(hNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.5, ylim = c(0, 8), col = "red", ylab = "The hazard function", las = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.