library(tradepolicy)
# data ----
ch1_application3 <- agtpa_applications %>%
filter(year %in% seq(1986, 2006, 4)) %>%
mutate(
exp_year = paste0(exporter, year),
imp_year = paste0(importer, year),
year = paste0("intl_border_", year),
log_trade = log(trade),
log_dist = log(dist),
intl_brdr = ifelse(exporter == importer, pair_id, "inter"),
intl_brdr_2 = ifelse(exporter == importer, 0, 1),
pair_id_2 = ifelse(exporter == importer, "0-intra", pair_id)
) %>%
spread(year, intl_brdr_2, fill = 0)
ch1_application3 <- ch1_application3 %>%
group_by(pair_id) %>%
mutate(sum_trade = sum(trade)) %>%
ungroup()
# ols ----
ch1_app3_ols <- tp_summary_app3(
formula = "log_trade ~ 0 + log_dist + cntg + lang + clny +
rta + exp_year + imp_year",
data = filter(ch1_application3, trade > 0, importer != exporter),
method = "lm"
)
# ppml ----
ch1_app3_ppml <- tp_summary_app3(
formula = "trade ~ 0 + log_dist + cntg + lang + clny +
rta + exp_year + imp_year",
data = filter(ch1_application3, importer != exporter),
method = "glm"
)
# trade diversion ----
ch1_app3_intra <- tp_summary_app3(
formula = "trade ~ 0 + log_dist + cntg + lang + clny +
rta + exp_year + imp_year + intl_brdr",
data = ch1_application3,
method = "glm"
)
# endogeneity ----
ch1_app3_endg <- tp_summary_app3(
formula = "trade ~ 0 + rta + exp_year + imp_year + pair_id_2",
data = filter(ch1_application3, sum_trade > 0),
method = "glm"
)
# reverse causality ----
ch1_app3_lead <- tp_summary_app3(
formula = "trade ~ 0 + rta + rta_lead4 + exp_year + imp_year + pair_id_2",
data = filter(ch1_application3, sum_trade > 0),
method = "glm"
)
# non-linear/phasing effects ----
ch1_app3_phsng <- tp_summary_app3(
formula = "trade ~ 0 + rta + rta_lag4 + rta_lag8 + rta_lag12 +
exp_year + imp_year + pair_id_2",
data = filter(ch1_application3, sum_trade > 0),
method = "glm"
)
# globalization ----
ch1_app3_glbzn <- tp_summary_app3(
formula = "trade ~ 0 + rta + rta_lag4 + rta_lag8 + rta_lag12 +
intl_border_1986 + intl_border_1990 + intl_border_1994 +
intl_border_1998 + intl_border_2002 +
exp_year + imp_year + pair_id_2",
data = filter(ch1_application3, sum_trade > 0),
method = "glm"
)
save.image("all-models-and-data/03-chapter1-regional-trade-agreements.RData", compress = "xz")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.