R/utils-calc-quantiles.R

Defines functions calc_quantiles

Documented in calc_quantiles

#' Calculate and insert columns containing arbitrary quantiles for a particular column
#'
#' @description Calculate and insert columns containing arbitrary quantiles for a particular column
#'
#' @param df A [data.frame]
#' @param col A column name on which to perform the calculations. Must be in `df` or an error
#' will be thrown
#' @param probs A vector of quantile probabilities to pass to [stats::quantile()]
#' @param include_mean If TRUE, include the mean in the output
#'
#' @return A [data.frame] with a new column for each value in the `probs` vector
#'
#' @export
#' @examples
#' library(tibble)
#' library(dplyr)
#' library(purrr)
#' pq <- tribble(
#'   ~year, ~grp, ~val,
#'   2000,    1,  2.1,
#'   2001,    1,  3.4,
#'   2002,    1,  4.5,
#'   2003,    1,  5.6,
#'   2004,    1,  6.7,
#'   2000,    2,  3.1,
#'   2001,    2,  4.4,
#'   2002,    2,  5.5,
#'   2003,    2,  6.6,
#'   2004,    2,  8.7,
#'   2000,    3, 13.1,
#'   2001,    3, 14.4,
#'   2002,    3, 15.5,
#'   2003,    3, 16.6,
#'   2004,    3, 18.7)
#'
#' probs <- c(0.05, 0.25, 0.5, 0.75, 0.95)
#'
#' yrs <- sort(unique(pq$year))
#' df <- pq %>%
#'   group_by(year) %>%
#'   group_map(~ calc_quantiles(.x, col = "val", probs = probs)) %>%
#'   map_df(~{.x}) %>%
#'   mutate(year = yrs) %>%
#'   select(year, everything())
calc_quantiles <- function(df = NULL,
                           col = NULL,
                           probs = c(0.05, 0.25, 0.5, 0.75, 0.95),
                           include_mean = TRUE){

  stopifnot(col %in% names(df))
  stopifnot(class(df[[col]]) == "numeric")
  col_sym <- sym(col)
  out <- summarize_at(df,
                      vars(!!col_sym),
                      map(probs,
                          ~partial(quantile, probs = .x, na.rm = TRUE)) %>%
                        set_names(probs))

  if(include_mean){
    out <- out %>%
      mutate(avg = mean(df[[col]]))
  }
  out
}
pacific-hake/pacifichakemse documentation built on June 11, 2024, 4:07 a.m.