View source: R/Proxytools_tools.R
paleodata_multiprocessing | R Documentation |
Multiple versions of the form: input data –> filtering –> interpolation –> time restriction (windowing) –> transformation –> signal extraction –> output data
paleodata_multiprocessing(
xin,
processing_name,
filtering = rep(FALSE, times = length(processing_name)),
filter_type = NULL,
filter_scales = NULL,
detr_scale = NULL,
smooth_scale = NULL,
interpolation = rep(FALSE, times = length(processing_name)),
interpolation_type = NULL,
interpolation_dates = NULL,
windowing = rep(FALSE, times = length(processing_name)),
start_date = NULL,
end_date = NULL,
transformation = rep(FALSE, times = length(processing_name)),
transformation_type = NULL,
signal_extraction = rep(FALSE, times = length(processing_name)),
signal_type = NULL,
signal_components = NA
)
xin |
Irregular time series object ('zoo::zoo'), xin can be multivariate |
processing_name |
Names of the different processing applications |
filtering |
Vector of logicals: should filtering be applied |
filter_type |
Vector of parameters for filtering (see paleodata_filtering) |
filter_scales |
Vector of parameters for filtering (see paleodata_filtering) |
detr_scale |
Vector of parameters for filtering (see paleodata_filtering) |
smooth_scale |
Vector of parameters for filtering (see paleodata_filtering) |
interpolation |
Vector of logicals: should interpolation be applied? |
interpolation_type |
Vector of parameters for interpolation (see paleodata_interpolation) |
interpolation_dates |
Vector of parameters for interpolation (see paleodata_interpolation) |
windowing |
Vector of logicals: should restriction to time window be applied? |
start_date |
Vector of parameters for windowing (see paleodata_windowing) |
end_date |
Vector of parameters for windowing (see paleodata_windowing) |
transformation |
Vector of logicals: should transformation be applied? |
transformation_type |
Vector of parameters for transformation (see paleodata_transformation) |
signal_extraction |
Vector of logicals: should signal extraction be applied? |
signal_type |
Vector of parameters for signal extraction (see paleodata_signal_extraction) |
signal_components |
Vector of parameters for signal extraction (see paleodata_signal_extraction) |
List of processed signals, provided as list of irregular time series objects ('zoo::zoo'). Fields '$data' contain the processed signals.
paleodata_processing (from 'PTBoxProxytools') for wrapper of individual processing chains
paleodata_filtering (from 'PTBoxProxytools') for filtering
paleodata_interpolation (from 'PTBoxProxytools') for interpolation
paleodata_windowing (from 'PTBoxProxytools') for time period restriction
paleodata_transformation (from 'PTBoxProxytools') for transformation
paleodata_signal_extraction (from 'PTBoxProxytools') for signal extraction
#' # Load ice core example data
library(PTBoxProxydata)
mng <- ProxyDataManager()
icecoredata <- load_set(mng,'icecore_testset',zoo_format = 'zoo')
# Step-by-step processing of ice core data in multiple different forms (here, smooting, detrending, and bandpass filtering is applied at the same time): 1) Smooth / Detrend / Bandpass filter, 2) Interpolate to common time axis, 3) Restrict to 30-60ka BP, 4) Normalize, 5) Compute 1. PC
icecoredata_processed <- paleodata_multiprocessing(xin = icecoredata$proxy_data[[1]], processing_name = c("Smoothing","Detrending","Bandpass filtering"),
filtering = rep(TRUE,times=3), filter_type = c("smooth","detrend","bandpass"), detr_scale = rep(1000,times=3), smooth_scale = rep(10000,times=3), filter_scales = data.frame(lower=rep(1000,times=3), upper=rep(10000,times=3)),
interpolation = rep(TRUE,times=3), interpolation_type = rep("spectral",times=3), interpolation_dates = list(seq(20000,70000,by=100),seq(20000,70000,by=100),seq(20000,70000,by=100)),
windowing = rep(TRUE,times=3), start_date = rep(30000,times=3), end_date = rep(60000,times=3),
transformation = rep(TRUE,times=3), transformation_type = rep("normalize",times=3),
signal_extraction = rep(TRUE,times=3), signal_type = rep("pca",times=3), signal_components = rep(1,times=3))
# Plotting
plot(icecoredata_processed[[1]]$data)
plot(icecoredata_processed[[2]]$data)
plot(icecoredata_processed[[3]]$data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.